Skip to main content

FISH in der Diagnostik hämatologischer Neoplasien

FISH in the diagnosis of hematological neoplasias

Zusammenfassung

Sämtliche hämatologische Neoplasien zeigen eine große klinische Variabilität. Allerdings lassen sich die Entitäten in eine Vielzahl von Prognose bestimmenden Subtypen auf der Basis genetischer Marker einteilen. Die individuelle Abstimmung der Therapie erfordert daher eine exakte Klassifikation des genetischen Subtyps. In Verbindung mit der Chromosomenanalyse spielt die Fluoreszenz-in-situ-Hybridisierung (FISH) dabei eine zentrale Rolle – für die weitere Aufklärung von Befunden der Chromosomenanalyse, z. B. bei akuten Leukämien, oder die Klassifikation diverser Subtypen, wie bei den Non-Hodgkin-Lymphomen. In Abhängigkeit von der Erkrankung kommt der FlSH-Analyse eine unterschiedliche Bedeutung zu. Sie wird zum einen als Methode der ersten Wahl zur genetischen Charakterisierung einer Erkrankung, z. B. des multiplen Myeloms, angewandt, oder kommt in Kombination mit der Chromosomenbänderungsanalyse zum Einsatz. Ferner kommt ihr eine essenzielle Bedeutung zu, wenn eine rasche Bestätigung einer Diagnose erforderlich ist, wie bei der akuten Promyelozytenleukämie mit t(15;17)/PML-RARA-Rearrangement, bei der ein sofortiger Therapiebeginn mit All-trans-Retinsäure (ATRA) notwendig ist.

Abstract

All hematological malignancies are characterized by considerable clinical heterogeneity. The diverse entities can be subdivided into a variety of prognosis-defining subtypes on the basis of cytogenetic aberrations and molecular mutations. To adapt the intensity of treatment to the patient’s individual risk profile, an exact classification of the subtypes on the basis of genetic markers is essential. Diverse fluorescent in situ hybridization (FISH) techniques thereby play a central role in interaction with classic chromosome banding analyses for clarifying findings of chromosome analyses, such as in the acute leukemias, or for classifying the diverse subtypes, as in the non-Hodgkin’s lymphomas. Depending on the disease, the clinical impact of FISH varies. It is used as the method of choice for genetic characterization (e.g., in multiple myeloma) or is used in combination with chromosome banding analysis. Furthermore, interphase FISH is essential when rapid confirmation of the diagnosis is needed, as in acute promyelocytic leukemia with the t(15;17)/PML-RARA rearrangement, for which therapy with all-trans retinoic acid (ATRA) should be immediately started.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Babicka L, Ransdorfova S, Brezinova J et al. (2007) Analysis of complex chromosomal rearrangements in adult patients with MDS and AML by multicolor FISH. Leuk Res 31: 39–47

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Baccarani M, Saglio G, Goldman J et al. (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European Leukemia Net. Blood 108: 1809–1820

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Bacher U, Kern W, Schoch C et al. (2006) Evaluation of complete disease remission in acute myeloid leukemia: a prospective study based on cytomorphology, interphase fluorescence in situ hybridization and immunophenotyping during follow-up in patients with acute myeloid leukemia. Cancer 106: 839–847

    PubMed  Article  Google Scholar 

  4. 4.

    Bernasconi P, Cavigliano PM, Boni M et al. (2003) Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? A study on 57 patients. Leukemia 17: 2107–2112

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Bloomfield CD, Shuma C, Regal L et al. (1997) Long-term survival of patients with acute myeloid leukemia: a third follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer 80: 2191–2198

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Chng WJ, Santana-Davila R, Van Wier SA et al. (2006) Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 20: 807–813

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Facon T, vet-Loiseau H, Guillerm G et al. (2001) Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy. Blood 97: 1566–1571

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Greenberg P, Cox C, LeBeau MM et al. (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088

    PubMed  CAS  Google Scholar 

  9. 9.

    Gutierrez NC, Castellanos MV, Martin ML et al. (2007) Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 21: 143–150

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Haferlach C, Rieder H, Lillington DM et al. (2007) Proposals for standardized protocols for cytogenetic analyses of acute leukemias, chronic lymphocytic leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders and myelodysplastic syndromes. Genes Chromosomes Cancer 46: 494–499

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Hallek M, Cheson BD, Catovsky D et al. (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia (IWCLL) updating the National Cancer Institute-Working Group (NCI-WG) 1996 guidelines. Blood 111: 5446–5456

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Jaffe ES, Harris NL, Stein H et al. (2001) World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

  13. 13.

    Lindvall C, Nordenskjold M, Porwit A et al. (2001) Molecular cytogenetic characterization of acute myeloid leukemia and myelodysplastic syndromes with multiple chromosome rearrangements. Haematologica 86: 1158–1164

    PubMed  CAS  Google Scholar 

  14. 14.

    Rigolin GM, Bigoni R, Milani R et al. (2001) Clinical importance of interphase cytogenetics detecting occult chromosome lesions in myelodysplastic syndromes with normal karyotype. Leukemia 15: 1841–1847

    PubMed  CAS  Google Scholar 

  15. 15.

    Schoch C, Schnittger S, Bursch S et al. (2002) Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 16: 53–59

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Schoch C, Kern W, Schnittger S et al. (2004) Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 18: 120–125

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Shali W, Helias C, Fohrer C et al. (2006) Cytogenetic studies of a series of 43 consecutive secondary myelodysplastic syndromes/acute myeloid leukemias: conventional cytogenetics, FISH and multiplex FISH. Cancer Genet Cytogenet 168: 133–145

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Swansbury GJ, Lawler SD, Alimena G et al. (1994) Long-term survival in acute myelogenous leukemia: a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 73: 1–7

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Zenz T, Dohner H, Stilgenbauer S (2007) Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract Res Clin Haematol 20: 439–453

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Zojer N, Konigsberg R, Ackermann J et al. (2000) Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 95: 1925–1930

    PubMed  CAS  Google Scholar 

  21. 21.

    Zou YS, Fink SR, Stockero KJ et al. (2007) Efficacy of conventional cytogenetics and FISH for EGR1 to detect deletion 5q in hematological disorders and to assess response to treatment with lenalidomide. Leuk Res 31: 1185–1189

    PubMed  Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Haferlach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bacher, U., Haferlach, C. FISH in der Diagnostik hämatologischer Neoplasien. medgen 20, 367–373 (2008). https://doi.org/10.1007/s11825-008-0131-x

Download citation

Schlüsselwörter

  • FISH
  • Chromosomenanalysen
  • Risikostratifizierung
  • Prognose
  • Leukämie

Keywords

  • FISH
  • Chromosome banding
  • Risk stratification
  • Prognosis
  • Leukemia