Skip to main content

Mathematische Modelle in der Populationsgenetik

Mathematical models in population genetics

Zusammenfassung

In der mathematischen Populationsgenetik wird der Einfluss von Selektion und Mutation auf die zeitliche Entwicklung der genetischen Struktur einer Population modelliert. Da alle Populationen und erst recht die für ihre Untersuchung zur Verfügung stehenden Stichproben endlich sind, spielen die stochastischen Aspekte der verwendeten Modelle eine besondere Rolle. Wichtige populationsgenetische Modelle sind das Wright-Fisher-Modell und das Koaleszenzmodell für die Genealogie von Stichproben sowie das „infinite alleles model“ und das „infinite sites model“ für die darin ablaufenden Mutationsprozesse.

Abstract

In mathematical population genetics, the influence of selection and mutation on the evolution of a population is modelled. Because all populations and particularly the samples used for their analysis are finite, the stochastic nature of these models plays an important role. Relevant genetic models include the Wright–Fisher model and the coalescence model for the genealogy of samples, as well as the infinite alleles model and the infinite sites model for the mutation processes superimposed upon these genealogies.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Cannings C (1974) The latent roots of certain Markov chains arising in genetics: a new approach 1. Haploid models. Adv Appl Prob 6: 260–290

    Article  Google Scholar 

  2. 2.

    Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3: 87–112

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Ewens WJ (2004) Mathematical population genetics, 2nd edn. Springer, Berlin Heidelberg New York

  4. 4.

    Fisher RA (1922) On the dominance ratio. Proc R Soc Edinb 42: 321–341

    Google Scholar 

  5. 5.

    Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

  6. 6.

    Haldane JBS (1924) A mathematical theory of natural and artificial selections, Part II. Proc Camb Phil Soc Biol Sci 1: 158–163

    Article  Google Scholar 

  7. 7.

    Haldane JBS (1937) The effect of variation on fitness. Am Nat 71: 337–349

    Article  Google Scholar 

  8. 8.

    Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624–626

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kimura M (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutation. Genetics 61: 893

    PubMed  CAS  Google Scholar 

  10. 10.

    Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49: 725–738

    PubMed  CAS  Google Scholar 

  11. 11.

    Kingman JFC (1982) The coalescent. Stochastic Proc Appl 13: 235–248

    Article  Google Scholar 

  12. 12.

    Moran PAP (1958) Random processes in genetics. Proc Camb Phil Soc 54: 60–71

    Google Scholar 

  13. 13.

    Nordborg M (2007) Coalescent theory. In: Balding DJ, Bishop M, Cannings C (eds) Statistical genetics, 3rd edn. Wiley, Chichester, pp 843–877

  14. 14.

    Ohta T, Kimura M (1969) Linkage disequilibrium due to random genetic drift. Genet Res 13: 47–55

    Article  Google Scholar 

  15. 15.

    Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Caliebe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caliebe, A. Mathematische Modelle in der Populationsgenetik. medgen 20, 282 (2008). https://doi.org/10.1007/s11825-008-0115-x

Download citation

Schlüsselwörter

  • Wright-Fisher-Modell
  • Koaleszenz
  • „infinite alleles model“
  • „infinite sites model“
  • Genetische Drift

Keywords

  • Wright-Fisher model
  • Coalescence
  • Infinite alleles model
  • Infinite sites model
  • Genetic drift