Skip to main content

Molekulare Karyotypisierung in der klinischen Anwendung

Molecular karyotyping in the clinical setting

Zusammenfassung

In den vergangenen Jahren hat sich die Anwendung der Mikroarraytechnologie für die Detektion von putativ pathologischen submikroskopischen Copy-Number-Variationen (CNV) einen festen Platz in der molekularen Zytogenetik erobert. Neben der Identifikation somatischer CNV in der onkologischen Diagnostik wird diese Technologie nunmehr für die Analyse von konstitutionellen CNV bei Patienten mit mentaler Retardierung genutzt. Arraybasierte genomische Hybridisierungen zeigen eine deutliche Verbesserung zu der bereits seit Jahren angewendeten komparativen genomischen Hybridisierung (CGH). Insbesondere weisen die dazugehörigen Technologien eine verbesserte Auflösung von weniger als 100 kb für Deletionen und Duplikationen auf und haben damit eine deutlich bessere Aufklärungsrate von Krankheiten mit Behinderungen ungeklärter Ursache. In einigen Zentren gehört die Arraytechnologie daher bereits zur Routinetechnologie der Syndromabklärung. Im vorliegenden Beitrag soll deshalb auch auf die Gemeinsamkeiten bzw. Unterschiede der verschiedenen Basistechnologien der Arraytechnik eingegangen werden.

Abstract

Microarray technology for the detection of putative pathological submicroscopic copy number variants (CNV) has become a standard tool in the field of molecular cytogenetics in recent years. In addition to the identification of somatic CNVs in tumour genetics this technology is increasingly used for the analysis of constitutional CNVs in patients with developmental delay. Array-based genomic hybridisation increases sensitivity in comparison to more conventional technologies such as comparative genomic hybridisation (CGH). Recent developments now allow a genome-wide detection of submicroscopic chromosomal alterations, deletions and duplications smaller than 100 Kb, thus significantly increasing the detection rate of chromosomal aberrations in patients suffering from idiopathic mental retardation. Several centers are already using array technology in their routine setting in the diagnostic approach to syndromes. Therefore, this overview focuses on the similarities, as well as the differences, of several basic array techniques.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

BAC:

„bacterial artificial chromosome“

CGH:

Komparative genomische Hybridisierung

CNAG:

„Copy number analyser for GeneChip®“

CNP:

Copy-Number-Polymorphismus

CNV:

Copy-Number-Variation

DNA:

Desoxyribonukleinsäure

FISH:

Fluoreszenz-in-situ-Hybridisierung

LOH:

„loss of heterocygosity“

MLPA:

„multiplex ligation-dependent probe amplification“

OMIM :

„online mendelian inheritance in man“

PAC:

„P1 artificial chromosome“

PCR:

Polymerasekettenreaktion

qPCR:

Quantitative Polymerasekettenreaktion

qRT-PCR:

Quantitative Real-Time-Polymerasekettenreaktion

SNP:

„single nucleotide polymorphism“

TAR:

„thrombocytopenia-absent radius syndrome“

UPD:

Uniparentale Disomie

YAC:

„yeast artificial chromosome“

Literatur

  1. 1.

    Adeyinka A, Adams SA, Lorentz CP et al. (2005) Subtelomere deletions and translocations are freqeuently familial. Am J Med Genet 135A: 28–35

    Article  Google Scholar 

  2. 2.

    Altug-Teber O, Dufke A, Poths S et al. (2005) A rapid microarray based whole genome analysis for detection of uniparental disomy. Hum Mutat 26: 153–159

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Balikova I, Martens K, Melotte C et al. (2008) Autosomal-dominant microtia linked to five tandem copies of a copy-number-variable region at chromosome 4p16. Am J Hum Genet 82: 181–187

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Balliff BC, Rorem EA, Sundin K et al. (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet 140A: 2757–2767

    Article  Google Scholar 

  5. 5.

    Barber JC (2005) Directly transmitted unbalanced chromosome abnormalities and euchromatic variants. J Med Genet 42: 609–629

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Carvalho B, Ouwerkerk E, Meijer GA et al. (2004) High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J Clin Pathol 57: 644–646

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    De Vries BB, Pfundt R, Leisink M et al. (2005) Diagnostic genome profiling in mental retardation. Am J Hum Genet 77: 606–616

    Article  Google Scholar 

  8. 8.

    Eichler EE (2006) Widening the spectrum of human genetic variation. Nat Genet 38: 9–11

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Filges I, Noppen C, Röthlisberger B et al. (2008) Copy number variation 13q: a large interstitial deletion with benign phenotype. Med Genet 20: 84

    Google Scholar 

  10. 10.

    Friedman JM, Baross A, Delaney AD et al. (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 79: 500–513

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Geschwind DH, Gregg J, Boone K et al. (1998) Klinefelter’s syndrome as a model of anomalous cerebral laterality: testing gene dosage in the X chromosome pseudoautosomal region using a DNA microarray. Dev Genet 23: 215–229

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Gribble SM, Prigmore E, Burford DC et al. (2005) The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet 42: 8–16

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hengstschläger M, Prusa A, Repa C et al. (2005) Subtelomeric rearrangements as neutral genomic polymorphisms. Am J Med Genet 133A: 48–52

    Article  PubMed  Google Scholar 

  14. 14.

    Iafrate AJ, Feuk L, Rivera MN et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Klopocki E, Schulze H, Strauß G et al. (2007) Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia – absent radius syndrome. Am J Hum Genet 80: 232–240

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Lucito R, Healy J, Alexander J et al. (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13: 2291–2305

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Osborne LR, Li M, Pober B et al. (2001) A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat Genet 29: 321–325

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Perry GH, Ben-Dor A, Tsalenko A et al. (2008) The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet 82: 685–695

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Pollack JR, Perou CM, Alizadeh AA et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23: 41–46

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Rauch A, Hoyer J, Guth S et al. (2006) Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet 140A: 2063–2074

    Article  Google Scholar 

  21. 21.

    Redon R, Ishikawa S, Fitch KR et al. (2006) Global variation in copy number in the human genome. Nature 444: 444–454

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Sebat J, Lakshmi B, Troge J et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Van Karnebeek CD, Jansweijer MC, Leenders AG et al. (2005) Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet 13: 6–25

    Article  Google Scholar 

  24. 24.

    Vermeesch JR, Fiegler H, De Leeuw N et al. (2007) Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur J Hum Genet 15: 1105–1114

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Vissers LE, De Vries BB, Osoegawa K et al. (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73: 1261–1270

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Wang DG, Fan JB, Siao CJ et al. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077–1082

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Yu S, Baker E, Hinton L et al. (2005) Frequency of truly cryptic subtelomere abnormalities – a study of 534 patients and literature review. Clin Genet 68: 436–441

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Zahir F, Friedman JM (2007) The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility. Clin Genet 72: 271–287

    PubMed  CAS  Article  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Dufke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dufke, A., Riess, O. & Bonin, M. Molekulare Karyotypisierung in der klinischen Anwendung. medgen 20, 419–431 (2008). https://doi.org/10.1007/s11825-008-0112-0

Download citation

Schlüsselwörter

  • Copy-Number-Variation (CNV)
  • Molekulare Karyotypisierung
  • Array-CGH
  • SNP-Array
  • Mentale Retardierung

Keywords

  • Copy number variation (CNV)
  • Molecular karyotyping
  • Array CGH
  • SNP array
  • Mental retardation