Skip to main content
Log in

Pharmakogenetik der oralen Antikoagulation mit Cumarinen

Pharmacogenetics of oral anticoagulation therapy with coumarins

  • Schwerpunkt
  • Published:
medizinische genetik

Zusammenfassung

Die Klonierung des VKORC1-Gens hat maßgeblich zu einem besseren Verständnis des Vitamin-K-Zyklus beigetragen. Das VKORC1-Protein konnte als der molekulare Zielort (Target) der Cumarine identifiziert werden. Mutationen und SNP innerhalb der translatierten und nichttranslatierten Regionen des VKORC1-Gens verursachen eine partielle bis totale Cumarinresistenz oder -sensitivität. Die Verfügbarkeit einer molekulargenetischen Diagnostik (VKORC1, CYP2C9) und einer Laboranalytik mittels HPLC (zur Bestimmung des Cumarin-, Vitamin-K- und Vitamin-K-Epoxid-Spiegels) ist hilfreich in der Detektion hereditärer und erworbener Einflussgrößen der Cumarintherapie und könnte zukünftig für eine individualisierte, risikoärmere orale Antikoagulationstherapie zum Einsatz kommen.

Abstract

The recent identification of VKORC1 has made important contributions to our understanding of the vitamin K cycle. The VKORC1 enzyme was shown to be the molecular target of coumarin drugs. Mutations and polymorphisms in coding and noncoding regions of the VKORC1 gene have been shown to cause both a partial to total coumarin resistance and coumarin sensitivity. Availability of molecular diagnostics (VKORC1, CYP2C9) and drug monitoring by HCPLC (determination of coumarin, vitamin K, and vitamin K epoxide levels) is helpful for detecting hereditary and acquired factors influencing coumarin therapy. In the future, these tools may be instrumental in designing individualized oral anticoagulation therapy regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Notes

  1. Die INR ist ein standardisierter Wert für die Gerinnungszeit des Blutes, mit dem die Effektivität einer Antikoagulationstherapie bestimmt werden kann. Während der Normalwert definitionsgemäß bei 1,0 liegt, sollte durch die Cumarinbehandlung eine Verzögerung der Gerinnung angestrebt werden, die bei einem INR=2,0–3,0 erreicht wird.

Literatur

  1. Chan E, McLachlan A, O’Reilly R et al. (1994) Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic-pharmacodynamic model. Clin Pharmacol Ther 56: 286–294

    Article  PubMed  CAS  Google Scholar 

  2. Fregin A, Rost S, Wolz W et al. (2002) Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 100: 3229–3232

    Article  PubMed  CAS  Google Scholar 

  3. Geisen C, Watzka M, Sittinger K et al. (2005) VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 94: 773–779

    PubMed  Google Scholar 

  4. Li T, Chang CY, Jin DY et al. (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427: 541–544

    Article  PubMed  CAS  Google Scholar 

  5. Oldenburg J (2005) Vitamin K intake and stability of oral anticoagulant treatment. Thromb Haemost 93: 799–800

    PubMed  CAS  Google Scholar 

  6. Oldenburg J, Bevans CG, Müller CR et al. (2006) Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Antioxid Redox Signal 8: 347–353

    Article  PubMed  CAS  Google Scholar 

  7. Oldenburg J, Bevans CG, Fregin A et al. (2007) Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles. Thromb Haemost 98: 570–578

    PubMed  CAS  Google Scholar 

  8. Oldenburg J, Watzka M, Rost S et al. (2007) VKORC1: molecular target of coumarins. J Thromb Haemost [Suppl 1] 5: 1–6

  9. Palareti G, Leali N, Coccheri S et al. (1996) Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Italian Study on Complications of Oral Anticoagulant Therapy. Lancet 348: 432–438

    Google Scholar 

  10. Rieder MJ, Reiner AP, Gage BF et al. (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352: 2285–2293

    Article  PubMed  CAS  Google Scholar 

  11. Rost S, Fregin A, Ivaskevicius V et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427: 537–541

    Article  PubMed  CAS  Google Scholar 

  12. Sconce E, Khan T, Mason J et al. (2005) Patients with unstable control have a poorer dietary intake of vitamin K compared to patients with stable control of anticoagulation.Thromb Haemost 93: 872–875

    PubMed  CAS  Google Scholar 

  13. Sconce EA, Khan TI, Wynne HA et al. (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  PubMed  CAS  Google Scholar 

  14. Ufer M (2005) Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 44: 1227–1246

    Article  PubMed  CAS  Google Scholar 

  15. Yuan HY, Chen JJ, Lee MT et al. (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14:1745–1751

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oldenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldenburg, J., Rost , S., Seidel, H. et al. Pharmakogenetik der oralen Antikoagulation mit Cumarinen. medgen 20, 230–235 (2008). https://doi.org/10.1007/s11825-008-0095-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11825-008-0095-x

Schlüsselwörter

Keywords

Navigation