Skip to main content

Genetische Störungen der Zahnentwicklung und Dentition

Genetic disorders of tooth development and dentition

Zusammenfassung

Die Zähne sind Organe, die aus ektodermalen epithelialen Aussackungen im Bereich des 1. Kiemenbogens entstehen, gesteuert von epitheliomesenchymalen Interaktionen. Dabei spielen zahlreiche Signalmoleküle speziell der 4 großen Familien TGF-β, FGF, Hedgehog und WNT sowie diverse Transkriptionsfaktoren eine Rolle. Eine Beteiligung der Retinoide an der Odontogenese ist durch umfangreiche Befunde belegt, auch wenn die Inaktivierung relevanter Gene in Mausmodellen meist keine Zahnanomalien verursacht. Die Zahnentwicklung wird klassischerweise in verschiedene Stadien eingeteilt: Entstehung der Zahnleiste, der Zahnknospe, der Schmelzkappe, der Schmelzglocke, die Wurzelbildung und der Zahndurchbruch. Anomalien der Zahnentwicklung können isoliert oder gemeinsam mit anderen Symptomen im Zusammenhang mit Syndromen auftreten. Sie können genetisch bedingt sein oder unter Einwirkung teratogener Stoffe während der Bildung und Mineralisierung der Zahnkeime zustande kommen. Dentibukkale Entwicklungsanomalien treten im Kontext seltener Erkrankungen auf und finden zunehmend Beachtung, da sie bei bestimmten Erkrankungen in der Diagnostik und als prädikative Faktoren wichtige Anhaltspunkte geben können. Allerdings ist hierfür eine interdisziplinäre und internationale Kooperation notwendig, die bislang erst in Ansätzen verwirklicht wurde.

Abstract

The teeth develop from oral ectodermal epithelial cells and ectomesenchymal cells originating from the cephalic neural crest under the regulatory influence of epithelio-mesenchymal interactions. Numerous signal molecules specifically from the four major groups TGF-β, FGF, hedgehog, and WNT, as well as various transcription factors play specific roles in different stages and locations during dental development. There is ample evidence that retinoids are important for normal tooth development even though inactivation of relevant genes in mouse models does not usually produce dental anomalies. Odontogenesis is usually divided into different stages: development of the dental lamina, bud, cup, bell, root formation and tooth eruption. Anomalies of tooth development may occur isolated or associated with other symptoms in specific syndromes; they may be of genetic origin or caused by teratogenic substances during formation or mineralization of the teeth. Orodental anomalies are found in the context of rare diseases and are increasingly recognized as markers for diagnosis or prediction. However, this requires interdisciplinary and international collaboration which is only starting to take place.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Abboud SL, Woodruff K, Liu C et al. (2002) Rescue of the osteopetrotic defect in op/op mice by osteoblast-specific targeting of soluble colony-stimulating factor-1. Endocrinology 143: 1942–1949

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Aberg T, Cavender A, Gaikwad JS et al. (2004) Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem 52: 131–140

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Aberg T, Wang XP, Kim JH et al. (2004) Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270: 76–93

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Alaluusua S, Lukinmaa PL, Torppa J et al. (1999) Developing teeth as biomarker of dioxin exposure. Lancet 353: 206

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Alaluusua S (2006) Amoxicillin may be a cause of enamel hypomineralization. Duodecim 122: 491–492

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Alaluusua S, Lukinmaa PL (2006) Developmental dental toxicity of dioxin and related compounds--a review. Int Dent J 56: 323–331

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Aldred MJ, Savarirayan R, Crawford PJ (2003) Amelogenesis imperfecta: a classification and catalogue for the 21st century. Oral Dis 9: 19–23

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Arte S, Pirinen S (2003) Hypodontia. Orphanet encyclopedia http://www.orpha.net/data/patho/GB/uk-hypodontia.pdf:update 2004

  9. 9.

    Aubin I, Adams CP, Opsahl S et al. (2005) A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 37: 803–805

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Ayme S, Urbero B, Oziel D et al. (1998) Information on rare diseases: the Orphanet project. Rev Med Interne (Suppl 3) 19: 376S–377S

    Google Scholar 

  11. 11.

    Ayme S (2003) Orphanet, an information site on rare diseases. Soins 672: 46–47

    Google Scholar 

  12. 12.

    Bartlett JD, Zhou Z, Skobe Z et al. (2003) Delayed tooth eruption in membrane type-1 matrix metalloproteinase deficient mice. Connect Tissue Res (Suppl 1) 44: 300–304

    Article  CAS  Google Scholar 

  13. 13.

    Bartlett JD, Ganss B, Goldberg M et al. (2006) 3. Protein-protein interactions of the developing enamel matrix. Curr Top Dev Biol 74: 57–115

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Bartlett JD, Skobe Z, Lee DH et al. (2006) A developmental comparison of matrix metalloproteinase-20 and amelogenin null mouse enamel. Eur J Oral Sci (Suppl 1) 114: 18–23; discussion 39–41, 379

    Article  Google Scholar 

  15. 15.

    Begue-Kirn C, Smith AJ, Ruch JV et al. (1992) Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol 36: 491–503

    CAS  PubMed  Google Scholar 

  16. 16.

    Bei M, Maas R (1998) FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125: 4325–4333

    CAS  PubMed  Google Scholar 

  17. 17.

    Bei M, Kratochwil K, Maas RL (2000) BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development. Development 127: 4711–4718

    CAS  PubMed  Google Scholar 

  18. 18.

    Berdal A, Papagerakis P, Hotton D et al. (1995) Ameloblasts and odontoblasts, target-cells for 1,25-dihydroxyvitamin D3: a review. Int J Dev Biol 39: 257–262

    CAS  PubMed  Google Scholar 

  19. 19.

    Berdal A (2003) [Gene/environment relations in the development of tooth anomalies]. Arch Pediatr (Suppl 1) 10: 16s–18s

    Google Scholar 

  20. 20.

    Berkovitz BK, Maden M, McCaffery P et al. (2001) The distribution of retinaldehyde dehydrogenase-2 in rat and human orodental tissues. Arch Oral Biol 46: 1099–1104

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Bloch-Zupan A (1993) La vitamine A, une vitamine indispensable au développment dentaire. Bulletin de l’Académie Nationale de Chirurgie Dentaire 39: 64–67

    Google Scholar 

  22. 22.

    Bloch-Zupan A, Decimo D, Loriot M et al. (1994) Expression of nuclear retinoic acid receptors during mouse odontogenesis. Differentiation 57: 195–203

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Bloch-Zupan A, Lecolle S, Goldberg M (1994) Galactosylceramide lipidosis (Krabbe’s disease) and deciduous dental tissues. A case report. J Submicrosc Cytol Pathol 26: 425–435

    CAS  PubMed  Google Scholar 

  24. 24.

    Bloch-Zupan A, Mark MP, Weber B et al. (1994) In vitro effects of retinoic acid on mouse incisor development. Arch Oral Biol 39: 891–900

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Bloch-Zupan A, Cousandier L, Hemmerle J (1997) Dens in dente: aspects ultrastructuraux. Journal d’Odonto-Stomatologie Pédiatrique 7: 47–54

    Google Scholar 

  26. 26.

    Bloch-Zupan A, Machwirth F (1997) Les amélogenèses imparfaites: vers une classification moléculaire. Journal d’Odonto-Stomatologie Pédiatrique 7: 81–88

    Google Scholar 

  27. 27.

    Bloch-Zupan A, Leveillard T, Gorry P et al. (1998) Expression of p21(WAF1/CIP1) during mouse odontogenesis. Eur J Oral Sci (Suppl 1) 106: 104–111

    Article  Google Scholar 

  28. 28.

    Bloch-Zupan A (2002) Genomics. In: Scully CS (ed) Oxford Handbook of Applied Dental Sciences

  29. 29.

    Bloch-Zupan A (2004) Odonto-génétique: une nouvelle facette de notre profession! Le Chirurgien Dentiste de France 1182: 77–86

    Google Scholar 

  30. 30.

    Bloch-Zupan A, Mornet E (2005) L’Odontohypophosphatasie. Le Chirurgien Dentiste de France 1235: 27–29

    Google Scholar 

  31. 31.

    Bloch-Zupan A, Goodman JR. (2006) Otodental syndrome. Orphanet J Rare Dis 1: 5

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Bloch-Zupan A (2007) Robert James Gorlin: Chirurgien-dentiste et généticien. Le Chirurgien Dentiste de France 1295: 22–24

    Google Scholar 

  33. 33.

    Bloch-Zupan A, Stachtou J, Emmanouil D et al. (2007) Oro-dental features as useful diagnostic tool in Rubinstein-Taybi syndrome. Am J Med Genet A 143: 570–573

    Article  Google Scholar 

  34. 34.

    Blomhoff R, Green MH, Berg T et al. (1990) Transport and storage of vitamin A. Science 250: 399–404

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Blomhoff R, Green MH, Green JB et al. (1991) Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 71: 951–990

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Boran T, Lesot H, Peterka M et al. (2005) Increased apoptosis during morphogenesis of the lower cheek teeth in tabby/EDA mice. J Dent Res 84: 228–233

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Butler WT, Brunn JC, Qin C (2003) Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res (Suppl 1) 44: 171–178

    Article  Google Scholar 

  38. 38.

    Camilleri S, McDonald F (2006) Runx2 and dental development. Eur J Oral Sci 114: 361–373

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Chai Y, Jiang X, Ito Y et al. (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127: 1671–1679

    CAS  PubMed  Google Scholar 

  40. 40.

    Chambon P (1996) A decade of molecular biology of retinoic acid receptors. Faseb J 10: 940–954

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Cho SW, Kim JY, Cai J et al. (2007) Temporospatial tissue interactions regulating the regeneration of the enamel knot in the developing mouse tooth. Differentiation 75: 158–165

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Cho SW, Lee HA, Cai J et al. (2007) The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation 75: 441–451

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Cobourne MT, Sharpe PT (2003) Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol 48: 1–14

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Cobourne MT, Sharpe PT (2005) Sonic hedgehog signaling and the developing tooth. Curr Top Dev Biol 65: 255–287

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Cobourne MT, Mitsiadis T (2006) Neural crest cells and patterning of the mammalian dentition. J Exp Zoolog B Mol Dev Evol 306: 251–260

    Article  CAS  Google Scholar 

  46. 46.

    Courtney JM, Blackburn J, Sharpe PT (2005) The Ectodysplasin and NFkappaB signalling pathways in odontogenesis. Arch Oral Biol 50: 159–163

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Crawford PJ, Aldred MJ, Bloch-Zupan A (2007) Amelogenesis imperfecta. Orphanet J Rare Dis 2: 17

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    D’Souza RN, Aberg T, Gaikwad J et al. (1999) Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126: 2911–2920

    Google Scholar 

  49. 49.

    Das P, Stockton DW, Bauer C et al. (2002) Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum Genet 110: 371–376

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Dassule HR, Lewis P, Bei M et al. (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127: 4775–4785

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    De Coster PJ, Verbeeck RM, Holthaus V et al. (2006) Seckel syndrome associated with oligodontia, microdontia, enamel hypoplasia, delayed eruption, and dentin dysmineralization: a new variant? J Oral Pathol Med 35: 639–641

    Article  Google Scholar 

  52. 52.

    Depew MJ, Tucker AS, Sharpe P (2002) Craniofacial development. In: Rossant J, Tam PPL (eds) Mouse development, Patterning, Morphogenesis, and Organogenesis. Academic Press, London, pp 421–498

    Chapter  Google Scholar 

  53. 53.

    Embery G, Hall R, Waddington R et al. (2001) Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12: 331–349

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Fedarko NS, Jain A, Karadag A et al. (2004) Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. Faseb J 18: 734–736

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126: 270–299

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res (Suppl 1) 44: 33–40

    Article  CAS  Google Scholar 

  57. 57.

    Fomon SJ, Ekstrand J, Ziegler EE (2000) Fluoride intake and prevalence of dental fluorosis: trends in fluoride intake with special attention to infants. J Public Health Dent 60: 131–139

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Foster BL, Popowics TE, Fong HK et al. (2007) Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47–126

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Francis-West P, Ladher R, Barlow A et al. (1998) Signalling interactions during facial development. Mech Dev 75: 3–28

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Fryns JP, de Ravel TJ (2002) London Dysmorphology Database, London Neurogenetics Database and Dysmorphology Photo Library on CD-ROM [Version 3] 2001R. M. Winter, M. Baraitser, Oxford University Press, ISBN 019851–780, pound sterling 1595. Hum Genet 111: 113

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Gibson CW, Yuan ZA, Hall B et al. (2001) Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 276: 31871–31875

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Goldberg M, Gritli A, Bloch-Zupan A et al. (1992) Effets des maladies de surcharge lysosomale sur l’odontogenèse. Entretiens de Bichat – Odontologie et Stomatologie, Expansion Scientifique Française, pp 7–11

  63. 63.

    Goldberg M, Gritli A, Bloch-Zupan A et al. (1993) Maladies de surcharge lysosomale, génétiques ou induites pharmacologiquement: effets de pathologies de glycosaminoglycanes et de sphingolipides sur les tissus dentaires. CR Soc Biol 187: 596–607

    CAS  Google Scholar 

  64. 64.

    Goldberg M, Septier D, Lecolle S et al. (1995) Lipids in predentine and dentine. Connect Tissue Res 33: 105–114

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Goldberg M, Septier D (2002) Phospholipids in amelogenesis and dentinogenesis. Crit Rev Oral Biol Med 13: 276–290

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Goldberg M, Rapoport O, Septier D et al. (2003) Proteoglycans in predentin: the last 15 micrometers before mineralization. Connect Tissue Res (Suppl 1) 44: 184–188

    Article  CAS  Google Scholar 

  67. 67.

    Gorlin RJ, Cohen MM, Hennekam JRCM (2001) Syndromes of the head and neck. 4th ed. Oxford: University Press

  68. 68.

    Gregory-Evans CY, Moosajee M, MacKay DS et al. (2007) SNP genome scanning localises microdeletions of chromosome 11q13 in oto-dental syndrome implicating FGF3 in dental and inner ear disease and FADD in ocular coloboma. Hum Mol Genet, in revision

  69. 69.

    Gritli-Linde A, Bei M, Maas R et al. (2002) Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 129: 5323–5337

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Guest SS, Evans CD, Winter RM (1999) The Online London Dysmorphology Database. Genet Med 1: 207–212

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Hall RK. (2006) Solitary median maxillary central incisor (SMMCI) syndrome. Orphanet J Rare Dis 1: 12

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Hardcastle Z, Hui CC, Sharpe PT (1999) The Shh signalling pathway in early tooth development. Cell Mol Biol (Noisy-le-grand) 45: 567–578

    CAS  Google Scholar 

  73. 73.

    Hart PS, Hart TC, Michalec MD et al. (2004) Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 41: 545–549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Hart S, Hart T, Gibson C et al. (2000) Mutational analysis of X-linked amelogenesis imperfecta in multiple families. Arch Oral Biol 45: 79–86

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Hart TC, Hart PS, Gorry MC et al. (2003) Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects. J Med Genet 40: 900–906

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Haruyama N, Thyagarajan T, Skobe Z et al. (2006) Overexpression of transforming growth factor-beta1 in teeth results in detachment of ameloblasts and enamel defects. Eur J Oral Sci (Suppl 1) 114: 30–34; discussion 39–41, 379

    Article  Google Scholar 

  77. 77.

    Helfrich MH (2005) Osteoclast diseases and dental abnormalities. Arch Oral Biol 50: 115–122

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Hovorakova M, Lesot H, Peterka M et al. (2005) The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anat Embryol (Berl) 209: 303–313

    Google Scholar 

  79. 79.

    Idrees F, Bloch-Zupan A, Free SL et al. (2006) A novel homeobox mutation in the PITX2 gene in a family with Axenfeld-Rieger syndrome associated with brain, ocular, and dental phenotypes. Am J Med Genet B Neuropsychiatr Genet 141: 184–191

    Article  CAS  Google Scholar 

  80. 80.

    Iwasaki K, Bajenova E, Somogyi-Ganss E et al. (2005) Amelotin – a novel secreted, ameloblast-specific protein. J Dent Res 84: 1127–1132

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Jarvinen E, Salazar-Ciudad I, Birchmeier W et al. (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci US 103: 18627–18632

    Article  CAS  Google Scholar 

  82. 82.

    Jernvall J, Kettunen P, Karavanova I et al. (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38: 463–469

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Jernvall J, Aberg T, Kettunen P et al. (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125: 161–169

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Jernvall J, Keranen SV, Thesleff I (2000) From the cover: evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc Natl Acad Sci USA 97: 14444–14448

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92: 19–29

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Jung HS, Francis-West PH, Widelitz RB et al. (1998) Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev Biol 196: 11–23

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, and −9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211: 256–268

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Kii I, Amizuka N, Minqi L et al. (2006) Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun 342: 766–772

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Kim JW, Seymen F, Lin BP et al. (2005) ENAM mutations in autosomal-dominant amelogenesis imperfecta. J Dent Res 84: 278–282

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Kim JW, Simmer JP, Hart TC et al. (2005) MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet 42: 271–275

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Kitamura K, Miura H, Miyagawa-Tomita S et al. (1999) Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development 126: 5749–5758

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Knight RD, Schilling TF (2006) Cranial neural crest and development of the head skeleton. Adv Exp Med Biol 589: 120–133

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Knudsen PA (1965) Fusion of upper incisors at bud or cap stage in mouse embryos with exencephaly induced by hypervitaminosis A. Acta Odontol Scand 23: 549–565

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Knudsen PA (1966) Congenital malformations of the jaws and related structures in exencephalic mouse embryos with anomalous molar germs, induced by hypervitaminosis A. Acta Odontol Scand 24: 679–707

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Koch G (2003) Prevalence of enamel mineralisation disturbances in an area with 1–1.2 ppm F in drinking water. Review and summary of a report published in Sweden in 1981. Eur J Paediatr Dent 4: 127–128

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Koyama E, Wu C, Shimo T et al. (2001) Development of stratum intermedium and its role as a Sonic hedgehog- signaling structure during odontogenesis. Dev Dyn 222: 178–191

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Kratochwil K, Dull M, Farinas I et al. (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 10: 1382–1394

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Kronmiller JE, Beeman CS (1994) Spatial distribution of endogenous retinoids in the murine embryonic mandible. Arch Oral Biol 39: 1071–1078

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Kronmiller JE, Beeman CS, Nguyen T et al. (1995) Blockade of the initiation of murine odontogenesis in vitro by citral, an inhibitor of endogenous retinoic acid synthesis. Arch Oral Biol 40: 645–652

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Kurisu K, Tabata MJ (1998) Hereditary diseases with tooth anomalies and their causal genes. Kaibogaku Zasshi 73: 201–208

    CAS  PubMed  Google Scholar 

  101. 101.

    Lammi L, Halonen K, Pirinen S et al. (2003) A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur J Hum Genet 11: 866–871

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Lammi L, Arte S, Somer M et al. (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74: 1043–1050

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Laurikkala J, Mikkola M, Mustonen T et al. (2001) TNF signaling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signaling centers and is regulated by Wnt and activin during tooth organogenesis. Dev Biol 229: 443–455

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Lesot H, Lisi S, Peterkova R et al. (2001) Epigenetic signals during odontoblast differentiation. Adv Dent Res 15: 8–13

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Li Y, Yuan ZA, Aragon MA et al. (2006) Comparison of body weight and gene expression in amelogenin null and wild-type mice. Eur J Oral Sci (Suppl 1) 114: 190–193

    Article  Google Scholar 

  106. 106.

    Lidral AC, Reising BC (2002) The role of MSX1 in human tooth agenesis. J Dent Res 81: 274–278

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Lin CR, Kioussi C, O’Connell S et al. (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401: 279–282

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Line SR (2003) Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evol Dev 5: 295–304

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    London J, Birkedal-Hansen H (2000) Opportunities in dental, oral, and craniofacial research. Compend Contin Educ Dent 21: 760–762, 764, 766

    CAS  PubMed  Google Scholar 

  110. 110.

    Luan X, Ito Y, Diekwisch TG (2006) Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn 235: 1167–1180

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Maas R, Bei M (1997) The genetic control of early tooth development. Crit Rev Oral Biol Med 8: 4–39

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    MacDougall M (2003) Dental structural diseases mapping to human chromosome 4q21. Connect Tissue Res (Suppl 1) 44: 285–291

    Article  CAS  Google Scholar 

  113. 113.

    MacDougall M, Dong J, Acevedo AC. (2006) Molecular basis of human dentin diseases. Am J Med Genet A 140: 2536–2546

    PubMed  Article  CAS  Google Scholar 

  114. 114.

    Magloire H, Couble ML, Romeas A et al. (2004) Odontoblast primary cilia: facts and hypotheses. Cell Biol Int 28: 93–99

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Mardh CK, Backman B, Holmgren G et al. (2002) A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2). Hum Mol Genet 11: 1069–1074

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Mark M, Lohnes D, Mendelsohn C et al. (1995) Roles of retinoic acid receptors and of Hox genes in the patterning of the teeth and of the jaw skeleton. Int J Dev Biol 39: 111–121

    CAS  PubMed  Google Scholar 

  117. 117.

    Mark MP, Bloch-Zupan A, Wolf C et al. (1991) Involvement of cellular retinoic acid-binding proteins I and II (CRABPI and CRABPII) and of the cellular retinol-binding protein I (CRBPI) in odontogenesis in the mouse. Differentiation 48: 89–98

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Mark MP, Bloch-Zupan A, Ruch JV (1992) Effects of retinoids on tooth morphogenesis and cytodifferentiations, in vitro. Int J Dev Biol 36: 517–526

    CAS  PubMed  Google Scholar 

  119. 119.

    Mark MP, Bloch-Zupan A, Ruch JV (1992) Patterned distributions of chondroitin sulfate isoforms, retinoic acid receptor gamma and cellular retinoic acid binding proteins in the embryonic mouse incisor. Proc Finn Dent Soc 88: 439–449

    PubMed  Google Scholar 

  120. 120.

    Matalova E, Tucker AS, Sharpe PT (2004) Death in the life of a tooth. J Dent Res 83: 11–16

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Matalova E, Antonarakis GS, Sharpe PT et al. (2005) Cell lineage of primary and secondary enamel knots. Dev Dyn 233: 754–759

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374: 356–360

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    McDowell EM, Shores RL, Spangler EF et al. (1987) Anomalous growth of rat incisor teeth during chronic intermittent vitamin A deficiency. J Nutr 117: 1265–1274

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Michaelides M, Bloch-Zupan A, Holder GE et al. (2004) An autosomal recessive cone-rod dystrophy associated with amelogenesis imperfecta. J Med Genet 41: 468–473

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Mikkola ML, Thesleff I (2003) Ectodysplasin signaling in development. Cytokine Growth Factor Rev 14: 211–224

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Mikkola ML, Millar SE (2006) The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 11: 187–203

    PubMed  Article  Google Scholar 

  127. 127.

    Miletich I, Sharpe PT (2003) Normal and abnormal dental development. Hum Mol Genet (Spec No 1) 12: 69–73

    Article  CAS  Google Scholar 

  128. 128.

    Miletich I, Sharpe PT (2004) Neural crest contribution to mammalian tooth formation. Birth Defects Res C Embryo Today 72: 200–212

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118: 216–225

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Mitsiadis TA, Luukko K (1995) Neurotrophins in odontogenesis. Int J Dev Biol 39: 195–202

    CAS  PubMed  Google Scholar 

  131. 131.

    Mitsiadis TA, Muramatsu T, Muramatsu H et al. (1995) Midkine (MK), a heparin-binding growth/differentiation factor, is regulated by retinoic acid and epithelial-mesenchymal interactions in the developing mouse tooth, and affects cell proliferation and morphogenesis. J Cell Biol 129: 267–281

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Mitsiadis TA, Salmivirta M, Muramatsu T et al. (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121: 37–51

    CAS  PubMed  Google Scholar 

  133. 133.

    Mostowska A, Kobielak A, Biedziak B et al. (2003) Novel mutation in the paired box sequence of PAX9 gene in a sporadic form of oligodontia. Eur J Oral Sci 111: 272–276

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Mostowska A, Kobielak A, Trzeciak WH (2003) Molecular basis of non-syndromic tooth agenesis: mutations of MSX1 and PAX9 reflect their role in patterning human dentition. Eur J Oral Sci 111: 365–370

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Nagano T, Oida S, Ando H et al. (2003) Relative levels of mRNA encoding enamel proteins in enamel organ epithelia and odontoblasts. J Dent Res 82: 982–986

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Nie X, Luukko K, Kettunen P (2006) BMP signalling in craniofacial development. Int J Dev Biol 50: 511–521

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Nie X, Luukko K, Kettunen P (2006) FGF signalling in craniofacial development and developmental disorders. Oral Dis 12: 102–111

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Niederreither K, McCaffery P, Drager UC et al. (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev 62: 67–78

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Noden DM, Schneider RA (2006) Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. Adv Exp Med Biol 589: 1–23

    PubMed  Article  Google Scholar 

  140. 140.

    Ong DE (1994) Cellular transport and metabolism of vitamin A: roles of the cellular retinoid-binding proteins. Nutr Rev 52: S24–31

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Opsahl S, Septier D, Aubin I et al. (2005) Is the lingual forming part of the incisor a structural entity? Evidences from the fragilitas ossium (fro/fro) mouse mutation and the TGFbeta1 overexpressing transgenic strain. Arch Oral Biol 50: 279–286

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Paine ML, Zhu DH, Luo W et al. (2000) Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol 132: 191–200

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Paine ML, Wang HJ, Luo W et al. (2003) A transgenic animal model resembling amelogenesis imperfecta related to ameloblastin over-expression. J Biol Chem 278: 19447–19452

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Paine ML, Luo W, Wang HJ et al. (2005) Dentin sialoprotein and dentin phosphoprotein overexpression during amelogenesis. J Biol Chem 280:31991–31998

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Papagerakis P, Peuchmaur M, Hotton D et al. (1999) Aberrant gene expression in epithelial cells of mixed odontogenic tumors. J Dent Res 78: 20–30

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Papagerakis P, Berdal A, Mesbah M et al. (2002) Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone 30: 377–385

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Papagerakis P, MacDougall M, Hotton D et al. (2003) Expression of amelogenin in odontoblasts. Bone 32: 228–240

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Parekh S, Kyriazidou A, Bloch-Zupan A et al. (2006) Multiple pulp stones and shortened roots of unknown etiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101: e139–142

    PubMed  Article  Google Scholar 

  149. 149.

    Perveen R, Lloyd IC, Clayton-Smith J et al. (2000) Phenotypic variability and asymmetry of Rieger syndrome associated with PITX2 mutations. Invest Ophthalmol Vis Sci 41: 2456–2460

    CAS  PubMed  Google Scholar 

  150. 150.

    Peterkova R, Peterka M, Vonesch JL et al. (1995) Contribution of 3-D computer-assisted reconstructions to the study of the initial steps of mouse odontogenesis. Int J Dev Biol 39: 239–247

    CAS  PubMed  Google Scholar 

  151. 151.

    Peterkova R, Lesot H, Viriot L et al. (2005) The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Arch Oral Biol 50: 219–225

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Peters H, Neubuser A, Balling R (1998) Pax genes and organogenesis: Pax9 meets tooth development. Eur J Oral Sci (Suppl 1) 106: 38–43

    Article  Google Scholar 

  153. 153.

    Peters H, Neubuser A, Kratochwil K et al. (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12: 2735–2747

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Peters H, Balling R (1999) Teeth. Where and how to make them. Trends Genet 15: 59–65

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Philbrick WM, Dreyer BE, Nakchbandi IA et al. (1998) Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA 95: 11846–11851

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Pirinen S (1998) Genetic craniofacial aberrations. Acta Odontol Scand 56: 356–359

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Pispa J, Thesleff I (2003) Mechanisms of ectodermal organogenesis. Dev Biol 262: 195–205

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Plikus MV, Zeichner-David M, Mayer JA et al. (2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 7: 440–457

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Rajpar MH, Harley K, Laing C et al. (2001) Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Genet 10: 1673–1677

    CAS  Article  Google Scholar 

  160. 160.

    Rajpar MH, Koch MJ, Davies RM et al. (2002) Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum Mol Genet 11: 2559–2565

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Rinne T, Brunner HG, Bokhoven H van (2007) p63-associated disorders. Cell Cycle 6: 262–268

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Risnes S, Peterkova R, Lesot H (2005) Distribution and structure of dental enamel in incisors of Tabby mice. Arch Oral Biol 50: 181-184

    PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Rossi M, Jones RL, Norbury G et al. (2003) The appearance of the feet in Pfeiffer syndrome caused by FGFR1 P252R mutation. Clin Dysmorphol 12: 269–274

    PubMed  Article  Google Scholar 

  164. 164.

    Ruch JV, Lesot H, Cam Y et al. (1996) Control of odontoblast differentiation: current hypothesis. Proceedings of the International Conference on Dentin/Pulp complex 1995, Japan, pp 105–111

  165. 165.

    Ruch JV (1998) Odontoblast commitment and differentiation. Biochem Cell Biol 76: 923–938

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Salazar-Ciudad I, Jernvall J (2002) A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci USA 99: 8116–8120

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Sasaki T, Ito Y, Xu X et al. (2005) LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev Biol 278: 130–143

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6: 348–356

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Satokata I, Ma L, Ohshima H et al. (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24: 391–395

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Savage T, Bennett T, Huang YF et al. (2006) Mandibular phenotype of p20C/EBPbeta transgenic mice: Reduced alveolar bone mass and site-specific dentin dysplasia. Bone 39: 552–564

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Simmer JP, Hu JC (2002) Expression, structure, and function of enamel proteinases. Connect Tissue Res 43: 441–449

    CAS  PubMed  Article  Google Scholar 

  172. 172.

    Slavkin H (1997) Craniofacial-oral-dental research in the 21st century. J Dent Res 76: 628–630

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Slavkin HC (1995) Molecular biology experimental strategies for craniofacial-oral-dental dysmorphology. Connect Tissue Res 32: 233–239

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Smahi A, Courtois G, Rabia SH et al. (2002) The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11: 2371–2375

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Snead ML, Paine ML, Luo W et al. (1998) Transgene animal model for protein expression and accumulation into forming enamel. Connect Tissue Res 38: 279–286; discussion 295–303

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Sonnenberg E, Meyer D, Weidner KM et al. (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123: 223–235

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Soprano DR, Blaner WS (1994) Plasma retinol-binding protein. In: Sporn MB, Roberts AB, Goodman DS (eds) The Retinoids. Biology, Chemistry and Medicine. Raven Press, New York, pp 257–282

  178. 178.

    Sreenath T, Thyagarajan T, Hall B et al. (2003) Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 278: 24874–24880

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  179. 179.

    Srivastava AK, Durmowicz MC, Hartung AJ et al. (2001) Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in Tabby mice. Hum Mol Genet 10:2973–2981

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180.

    Tabata MJ, Kim K, Liu JG et al. (1996) Hepatocyte growth factor is involved in the morphogenesis of tooth germ in murine molars. Development 122: 1243–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Tahayato A, Dolle P, Petkovich M (2003) Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Expr Patterns 3: 449–454

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Thesleff I, Vaahtokari A, Partanen AM (1995) Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 39: 35–50

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Thesleff I, Jernvall J (1997) The enamel knot: a putative signaling center regulating tooth development. Cold Spring Harb Symp Quant Biol 62: 257–267

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Thesleff I, Aberg T (1999) Molecular regulation of tooth development. Bone 25: 123–125

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    Thesleff I (2000) Genetic basis of tooth development and dental defects. Acta Odontol Scand 58: 191–194

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Thesleff I, Mikkola M (2002) The role of growth factors in tooth development. Int Rev Cytol 217: 93–135

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116: 1647–1648

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Thesleff I (2003) Developmental biology and building a tooth. Quintessence Int 34: 613–620

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Thesleff I (2006) The genetic basis of tooth development and dental defects. Am J Med Genet A 140: 2530–2535

    PubMed  Article  PubMed Central  Google Scholar 

  190. 190.

    Thomas BL, Tucker AS, Qui M et al. (1997) Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 124: 4811–4818

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Thyagarajan T, Totey S, Danton MJ et al. (2003) Genetically altered mouse models: the good, the bad, and the ugly. Crit Rev Oral Biol Med 14: 154–174

    PubMed  Article  PubMed Central  Google Scholar 

  192. 192.

    Tiffee JC, Xing L, Nilsson S et al. (1999) Dental abnormalities associated with failure of tooth eruption in src knockout and op/op mice. Calcif Tissue Int 65: 53–58

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193.

    Tompkins K (2006) Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res 47: 111–118

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. 194.

    Townsend GC, Aldred MJ, Bartold PM (1998) Genetic aspects of dental disorders. Aust Dent J 43: 269–286

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  195. 195.

    Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5: 499–508

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196.

    Tucker AS, Sharpe PT (1999) Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res 78: 826–834

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  197. 197.

    Tucker AS, Yamada G, Grigoriou M et al. (1999) Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 126: 51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Tucker AS, Headon DJ, Schneider P et al. (2000) Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Development 127: 4691–4700

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Vaahtokari A, Aberg T, Jernvall J et al. (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54: 39–43

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  200. 200.

    Vainio S, Karavanova I, Jowett A et al. (1993) Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75: 45–58

    CAS  PubMed  Article  Google Scholar 

  201. 201.

    Vieira H, Gregory-Evans K, Lim N et al. (2002) First genomic localization of oculo-oto-dental syndrome with linkage to chromosome 20q13.1. Invest Ophthalmol Vis Sci 43: 2540–2545

    PubMed  Google Scholar 

  202. 202.

    Wakeling EL, Dattani MT, Bloch-Zupan A et al. (2003) Septo-optic dysplasia, subglottic stenosis and skeletal abnormalities: a case report. Clin Dysmorphol 12: 105–107

    PubMed  Article  Google Scholar 

  203. 203.

    Wang X, Thesleff I (2006) Tooth development. In: Unsicker K, Krieglstein K (eds) Cell signalling and growth factors in development. Wiley-VCH, Weinheim, pp 719–754

  204. 204.

    Wang XP, Suomalainen M, Jorgez CJ et al. (2004) Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell 7: 719–730

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Weerheijm KL (2003) Molar incisor hypomineralisation (MIH). Eur J Paediatr Dent 4: 114–120

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Weerheijm KL, Duggal M, Mejara I et al. (2003) Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003. Eur J Paed Dent 4: 110–113

    CAS  Google Scholar 

  207. 207.

    Werner SA, Gluhak-Heinrich J, Woodruff K et al. (2007) Targeted expression of csCSF-1 in op/op mice ameliorates tooth defects. Arch Oral Biol 52: 432–443

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  208. 208.

    White SN, Paine ML, Ngan AY et al. (2007) Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel. J Biol Chem 282: 5340–5345

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  209. 209.

    Winter RM, Baraitser M (1987) The London dysmorphology database. J Med Genet 24: 509–510

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  210. 210.

    Wise GE, Lumpkin SJ, Huang H et al. (2000) Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res 79: 1937–1942

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  211. 211.

    Wolf NI, Harting I, Innes AM et al. (2007) Ataxia, delayed dentition and hypomyelination: a novel leukoencephalopathy. Neuropediatrics 38: 64–70

    CAS  Article  Google Scholar 

  212. 212.

    Wright JT (2006) The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet A 140: 2547–2555

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  213. 213.

    Xu X, Bringas P Jr, Soriano P et al. (2005) PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis. Dev Dyn 232: 75–84

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  214. 214.

    Ye L, Le TQ, Zhu L et al. (2006) Amelogenins in human developing and mature dental pulp. J Dent Res 85: 814–818

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  215. 215.

    Yoda S, Suda N, Kitahara Y et al. (2004) Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol 49: 435–442

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  216. 216.

    Yokohama-Tamaki T, Ohshima H, Fujiwara N et al. (2006) Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development 133: 1359–1366

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  217. 217.

    Zhang X, Zhao J, Li C et al. (2001) DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 27: 151–152

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bloch-Zupan DChD, PhD, HDR, MCU-PH, Oral biology.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bloch-Zupan, A. Genetische Störungen der Zahnentwicklung und Dentition. medgen 19, 399–406 (2007). https://doi.org/10.1007/s11825-007-0050-2

Download citation

Schlüsselwörter

  • Zahnanomalien
  • Zähne
  • Genetik
  • Syndrome
  • Maus
  • Mensch

Keywords

  • Dental anomalies
  • Tooth
  • Genetics
  • Syndrome
  • Mouse
  • Human