Skip to main content

Die Genetik atopischer Erkrankungen

Die Bedeutung des Barrieredefekts bei atopischer Dermatitis und Asthma

Genetic determinants of allergic disease

The importance of barrier dysfunction in the etiology of atopic dermatitis and asthma

Zusammenfassung

Die atopischen Erkrankungen – atopische Dermatitis (AD), allergische Rhinokonjunktivitis und Asthma bronchiale – sind häufige, chronisch-entzündliche Erkrankungen der Haut und Atemwege, die oft mit Allergien (Bildung von spezifischen IgE-Antikörpern) gegen Umweltallergene assoziiert sind. Als komplexe genetische Erkrankungen werden sie sowohl durch genetische Faktoren als auch durch Umwelteinflüsse verursacht.

Bisherige Anstrengungen bei der Suche nach Krankheitsgenen zielten daher häufig auf die der Immunreaktion zugrunde liegenden Mechanismen ab. Jüngste Erfolge bei der Genidentifizierung belegen dagegen den großen Einfluss, den der epitheliale Barrieredefekt auf die Ätiologie von AD und Asthma hat. Sie stellen einen wichtigen Meilenstein bei der Aufdeckung der genetischen Ursachen dieser komplexen Erkrankungen dar und ermöglichen eine neue Sicht auf die molekularen Mechanismen, die zur Krankheitsentstehung führen. Darüber hinaus können sie wegweisend für die Entwicklung neuer Behandlungs- und Präventionsstrategien sein.

Abstract

Allergic disorders (atopic dermatitis, asthma, hay fever) are common chronic inflammatory diseases of the skin and airways that are often associated with allergies (formation of specific IgE antibodies) to environmental allergens. They are complex genetic diseases, so that both genetic and environmental factors are involved in their causation.

Most of the research effort devoted to the search for genes that might be responsible has so far focused on the mechanisms behind the immune response. More recent work on gene identification, however, documents the decisive importance of epithelial barrier defects in the pathogenesis of AD and allergic airways disease. These findings represent an important milestone in unraveling the genetic mechanisms underlying these complex diseases and allow new insight into the molecular mechanisms that lead illnesses to develop. In addition, they might point the way to novel preventive and therapeutic strategies for atopic disorders.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee (1998) Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet 351: 1225–1232

    Article  Google Scholar 

  2. 2.

    Chavanas S, Bodemer C, Rochat A et al. (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25: 141–142

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Cox HE, Moffatt MF, Faux JA et al. (1998) Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br J Dermatol 138: 182–187

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Descargues P, Deraison C, Bonnart C et al. (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37: 56–65

    PubMed  CAS  Google Scholar 

  5. 5.

    Dold S, Wjst M, Mutius E von et al. (1992) Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child 67: 1018–1022

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Hershey GK, Friedrich MF, Esswein LA et al. (1997) The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med 337: 1720–1725

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Kawashima T, Noguchi E, Arinami T et al. (1998) Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet 35: 502–504

    PubMed  CAS  Google Scholar 

  8. 8.

    Kere J, Laitinen T (2004) Positionally cloned susceptibility genes in allergy and asthma. Curr Opin Immunol 16: 689–694

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kuperman DA, Huang X, Koth LL et al. (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8: 885–889

    PubMed  CAS  Google Scholar 

  10. 10.

    Kurz T, Altmueller J, Strauch K et al. (2005) A genome-wide screen on the genetics of atopy in a multiethnic European population reveals a major atopy locus on chromosome 3q21.3. Allergy 60: 192–199

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Lee YA, Wahn U, Kehrt R et al. (2000) A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26: 470–473

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Liu X, Nickel R, Beyer K et al. (2000) An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90). J Allergy Clin Immunol 106: 167–170

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Mao XQ, Shirakawa T, Yoshikawa T et al. (1996) Association between genetic variants of mast-cell chymase and eczema. Lancet 348: 581–583

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Marenholz I, Nickel R, Ruschendorf F et al. (2006) Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol 118: 866–871

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Morar N, Willis-Owen SA, Moffatt MF, Cookson WO (2006) The genetics of atopic dermatitis. J Allergy Clin Immunol 118: 24–34

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Ober C, Hoffjan S (2006) Asthma genetics 2006: The long and winding road to gene discovery. Genes Immun 7: 95–100

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Palmer CN, Irvine AD, Terron-Kwiatkowski A et al. (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38: 441–446

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Rosenwasser LJ (1997) Interleukin-4 and the genetics of atopy. N Engl J Med 337: 1766–1767

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Smith FJ, Irvine AD, Terron-Kwiatkowski A et al. (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38: 337–342

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Taylor B, Wadsworth J, Wadsworth M, Peckham C (1984) Changes in the reported prevalence of childhood eczema since the 1939–45 war. Lancet 2: 1255–1257

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Vasilopoulos Y, Cork MJ, Murphy R et al. (2004) Genetic association between an AACC insertion in the 3’UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 123: 62–66

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Walley AJ, Chavanas S, Moffatt MF et al. (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29: 175–178

    PubMed  Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y.-A. Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marenholz, I., Lee, YA. Die Genetik atopischer Erkrankungen. medgen 19, 346–349 (2007). https://doi.org/10.1007/s11825-007-0038-y

Download citation

Schlüsselwörter

  • Atopische Dermatitis
  • Asthma
  • Krankheitsgene
  • Barrierestörung
  • Filaggrin

Keywords

  • Atopic dermatitis
  • Asthma
  • Disease genes
  • Barrier defect
  • Filaggrin