Skip to main content

Genetische Determinanten des EKG

Identifizierung proarrhythmogener genetischer Risikomarker

Genetic determinants of the ECG

Identification of proarrhythmogenic genetic risk markers

Zusammenfassung

Schon bald nach der Erfindung des EKG wurden die hohen Heritabilitäten vieler EKG-Parameter erkannt. Seit etwa einer Dekade wird intensiv an der Aufklärung zugrunde liegender genetischer Varianten gearbeitet, mit der Einführung genomweiter Assoziationsstudien steht dafür nun auch eine adäquate Methode zur Verfügung. Die molekulare Identifizierung und Charakterisierung bisher unbekannter herzrhythmusassoziierter Gene und Genvarianten verspricht nicht nur eine Vertiefung unseres Verständnisses der kardialen Elektrophysiologie, sondern auch eine Option auf bessere therapeutische und präventive Strategien für Arrhythmien und den plötzlichen Herztod.

Abstract

Soon after the introduction of the electrocardiogram (ECG), the high heritabilities of many ECG parameters were recognized. About a decade ago the identification of underlying genetic variants was initiated. With the advent of genome-wide association studies, an adequate method exists to comprehensively identify heart-rhythm-associated genes and gene variants. Their molecular characterization will not only enhance our level of understanding of cardiac electrophysiology but will also offer a future option for improving therapeutic and preventive strategies against arrhythmias and sudden cardiac death.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Adams TD, Yanowitz FG, Fisher AG et al. (1985) Heritability of cardiac size: an echocardiographic and electrocardiographic study of monozygotic and dizygotic twins. Circulation 71: 39–44

    PubMed  CAS  Google Scholar 

  2. 2.

    An P, Rice T, Gagnon J et al. (1999) Familial aggregation of resting blood pressure and heart rate in a sedentary population: the HERITAGE family study. Health, risk factors, exercise training, and genetics. Am J Hypertens 12: 264–270

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Arking DE, Pfeufer A, Post W et al. (2006) A common genetic variant in the NOS regulator NOS1AP modulates cardiac repolarization. Nat Genet 38: 644–651

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bauer A, Kantelhardt JW, Barthel P et al. (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367: 1674–1681

    PubMed  Article  Google Scholar 

  5. 5.

    Bezzina CR, Verkerk AO, Busjahn A et al. (2003) A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 59: 27–36

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Busjahn A, Knoblauch H, Faulhaber HD et al. (1999) QT interval is linked to 2 long-QT syndrome loci in normal subjects. Circulation 99: 3161–3164

    PubMed  CAS  Google Scholar 

  7. 7.

    Carter N, Snieder H, Jeffery S et al. (2000) QT interval in twins. J Hum Hypertens 14: 389–390

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Ditto B (1993) Familial influences on heart rate, blood pressure, and self-report anxiety responses to stress: results from 100 twin pairs. Psychophysiology 30: 635–45

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Freedman RA, Alderman EL, Sheffield LT et al. (1987) Bundle branch block in patients with chronic coronary artery disease: angiographic correlates and prognostic significance. J Am Coll Cardiol 10: 73–80

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Friedlander Y, Lapidos T, Sinnreich R et al. (1999) Genetic and environmental sources of QT interval variability in Israeli families: the kibbutz settlements family study. Clin Genet 56: 200–209

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Gouas L, Nicaud V, Berthet M et al. ; D.E.S.I.R. Study Group (2005) Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet 13: 1213–1222

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Grandinetti A, Seifried SE, Chow DC et al. (2006) Association between angiotensin-converting enzyme gene polymorphisms and QT duration in a multiethnic population in Hawaii. Auton Neurosci 130: 51–56

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hanson BR, Halberg F, Tuna N et al. (1984) Rhythmometry reveals heritability of circadian characteristics of heart rate of human twins reared apart. Cardiologia 29: 267–282

    PubMed  CAS  Google Scholar 

  14. 14.

    Hanson B, Tuna N, Bouchard T et al. (1989) Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am J Cardiol 63: 606–609

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Havlik RJ, Garrison RJ, Fabsitz R et al. (1980) Variability of heart rate, P-R, QRS and Q-T durations in twins. J Electrocardiol 13: 45–48

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kupper NH, Willemsen G, Van den Berg M et al. (2004) Heritability of ambulatory heart rate variability. Circulation 110: 2792–2796

    PubMed  Article  Google Scholar 

  17. 17.

    Lai LP, Su MJ, Yeh HM et al. (2002) Association of the human minK gene 38G allele with atrial fibrillation: evidence of possible genetic control on the pathogenesis of atrial fibrillation. Am Heart J 144: 485–490

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Laramie JM, Wilk JB, Hunt ST et al. (2006) Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program. BMC Med Genet 7: 17

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Mayosi BM, Keavney B, Kardos A et al. (2002) Electrocardiographic measures of left ventricular hypertrophy show greater heritability than echocardiographic left ventricular mass. Eur Heart J 23: 1963–1971

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Näbauer M (2001) Tuning repolarization in the heart: a multitude of potassium channels and regulatory pathways. Circ Res 88: 453–455

    PubMed  Google Scholar 

  21. 21.

    Newton-Cheh C, Larson MG, Corey DC et al. (2005) QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: The Framingham Heart Study. Heart Rhythm 2: 277–284

    PubMed  Article  Google Scholar 

  22. 22.

    Pfeufer A, Jalilzadeh S, Perz S et al. (2005) Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 96: 693–701

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Pilia G, Chen WM, Scuteri A et al. (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2: e132

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ranade K, Jorgenson E, Sheu WH et al. (2002) A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate. Am J Hum Genet 70: 935–942

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Russell MW, Law I, Sholinsky P et al. (1998) Heritability of ECG measurements in adult male twins. J Electrocardiol [Suppl] 30: 64–68

    Google Scholar 

  26. 26.

    Schatzkin A, Cupples LA, Heeren T et al. (1984) Sudden death in the Framingham Heart Study. Differences in incidence and risk factors by sex and coronary disease status. Am J Epidemiol 120: 888–899

    PubMed  CAS  Google Scholar 

  27. 27.

    Schouten EG, Dekker JM, Meppelink P et al. (1991) QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation 84: 1862–1865

    Google Scholar 

  28. 28.

    Singh JP, Larson MG, O’Donnell CJ et al. (1999) Heritability of heart rate variability: the Framingham Heart Study. Circulation 99: 2251–2254

    PubMed  CAS  Google Scholar 

  29. 29.

    Sinnreich R, Friedlander Y, Luria MH et al. (1999) Inheritance of heart rate variability: the kibbutzim family study. Hum Genet 105: 654–61

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Smith GD, Ebrahim S (2003) Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32: 1–22

    Article  Google Scholar 

  31. 31.

    Snieder H, Boomsma DI, Van Doornen LJ et al. (1997) Heritability of respiratory sinus arrhythmia: dependency on task and respiration rate. Psychophysiology 34: 317–328

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Splawski I, Timothy KW, Tateyama M et al. (2002) Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297: 1333–1336

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Vrtovec B, Delgado R, Zewail A et al. (2003) Prolonged QTc interval and high B-type natriuretic peptide levels together predict mortality in patients with advanced heart failure. Circulation 107: 1764–1769

    PubMed  Article  Google Scholar 

  34. 34.

    Wise NB, Comequi WJ, White PD (1939) An electrocardiographic study of twins. Am Heart J 17: 701–710

    Article  Google Scholar 

  35. 35.

    Zimetbaum PJ, Buxton AE, Batsford W et al. (2004) Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation 110: 766–769

    PubMed  Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Pfeufer .

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pfeufer , A. Genetische Determinanten des EKG. medgen 19, 309–315 (2007). https://doi.org/10.1007/s11825-007-0027-1

Download citation

Schlüsselwörter

  • Elektrokardiographie
  • Assoziationsstudien
  • Herzrhythmusassoziierte Gene
  • Arrhythmien
  • Plötzlicher Herztod

Keywords

  • Electrocardiography
  • Genome-wide association studies
  • Heart-rhythm-associated genes
  • Arrhythmias
  • Sudden cardiac death