Regular and Chaotic Dynamics

, Volume 13, Issue 1, pp 9–18 | Cite as

Dynamics of coupled non-identical systems with period-doubling cascade

  • A. P. KuznetsovEmail author
  • I. R. Sataev
  • J. V. Sedova
Research Articles


We discuss the structure of bifurcation diagram in the plane of parameters controlling period-doublings for the system of coupled logistic maps. The analysis is carried out by computing the charts of dynamical regimes and charts of Lyapunov exponents giving showy and effective illustrations. The critical point of codimension two at the border of chaos is found. It is a terminal point for the Feigenbaum critical line. The bifurcation analysis in the vicinity of this point is presented.

Key words

criticality universality transition to chaos coupled maps bifurcation terminal point 

MSC2000 numbers

34C15 37D45 37E20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E. and Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development, Berlin: Springer-Verlag, 2002.Google Scholar
  2. 2.
    Mosekilde, E., Maistrenko, Y., and Postnov, D., Chaos Synchronization: Application to Living Systems, Singapore: World Scientific, 2002.Google Scholar
  3. 3.
    Reick, C. and Mosekilde, E., Emergence of Quasiperiodicity in Symmetrically Coupled, Identical PeriodDoubling Systems, Phys. Rev. E, 1995, vol. 52, no. 2, pp. 1418–1435.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rasmussen, J., Mosekilde E., and Reick. C., Bifurcations in Two Coupled Rossler Systems, Mathematics and Computers in Simulation, 1996, vol. 40, pp. 247–270.CrossRefGoogle Scholar
  5. 5.
    Yanchuk, S., Maistrenko, Y., and Mosekilde, E., Loss of Synchronization in Coupled Rossler Systems, Physica D, 2001, vol. 154, nos. 1–2, pp. 26–42.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Yanchuk, S. and Kapitaniak, T., Chaos-Hyperchaos Transition in Coupled Rossler Systems, Phys. Letters A, 2001, vol. 290, nos. 3–4, pp. 139–144.CrossRefzbMATHGoogle Scholar
  7. 7.
    Yuan, J.-M., Tung, M., Feng, D.-H., and Narducci, L.M., Instability and Irregular Behavior of Coupled Logistic Equations, Phys. Rev. A, 1983, vol. 28, pp. 1662–1666.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kuznetsov, A.P., Kuznetsov, S.P., and Sataev, I.R., Bicritical Dynamics of Period-Doubling Systems with Unidirectional Coupling, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1991, vol. 1, no. 4, pp. 839–848.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kuznetsov, A.P., Kuznetsov, S.P., and Sataev, I.R., Variety of Types of Critical Behavior and Multistability in Period Doubling Systems with Unidirectional Coupling Near the Onset of Chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1993, vol. 3, no. 1, pp. 139–152.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kim, S.-Y., Lim, W., and Kim, Y., Universal Bicritical Behavior of Period Doublings in Unidirectionally Coupled Oscillators, Progr. Theor. Phys., 2001, vol. 106, no. 1, pp. 17–37.CrossRefzbMATHGoogle Scholar
  11. 11.
    Kim, S.-Y., Bicritical Behavior of Period Doublings in Unidirectionally Coupled Maps, Phys. Rev. E, 1999, vol. 59, no. 6, pp. 6585–6592.CrossRefGoogle Scholar
  12. 12.
    Kim, S.-Y. and Lim, W., Bicritical Scaling Behavior in Unidirectionally Coupled Oscillators, Phys. Rev. E, 2001, vol. 63, no. 3, 036223.CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, S.P., Dynamical Chaos, Moscow: FizMatLit, 2006 (in Russian).Google Scholar
  14. 14.
    Kuznetsov, A.P., Kuznetsov, S.P., and Sataev, I.R., A Variety of Period-Doubling Universality Classes in Multi-Parameter Analysis of Transition to Chaos, Physica D, 1997, vol. 109, pp. 91–112.Google Scholar
  15. 15.
    Kuznetsov, A.P., Kuznetsov, S.P., and Sataev, I.R., Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps, J. Stat. Phys., 2005, vol. 121, nos. 5-6, pp. 697–748.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kuznetsov, A.P. and Sataev, I.R., Period-Doubling for Two-Dimensional Non-Invertible Maps: Renormalization Group Analysis and Quantitative Universality, Physica D, 1997, vol. 101, pp. 249–269.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kuznetsov, A.P. and Sataev, I.R., Universality and Scaling for the Breakup of Phase Synchronization at the Onset of Chaos in a Periodically Driven Rossler Oscillator, Phys. Rev. E, 2001, vol. 64, 046214.CrossRefGoogle Scholar
  18. 18.
    Kuznetsov, Yu.A. and Levitin, V.V., CONTENT: A Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamical Systems, Dynamical Systems Laboratory, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands, 1997.Google Scholar
  19. 19.
    Marcus, M. and Hess, B., Lyapunov Exponents of the Logistic Map with Periodic Forcing. Computers and Graphics, 1989, vol. 13, no. 4, pp. 553–558.CrossRefGoogle Scholar
  20. 20.
    Rossler, J., Kiwi, M., Hess, B., and Marcus, M., Modulated Nonlinear Processes and a Novel Mechanism to Induce Chaos, Phys. Rev. A, 1989, vol. 39, no. 11, pp. 5954–5960.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Marcus, M., Chaos in Maps with Continuous and Discontinuous Maxima, Computers in Physics, 1990, September/ October, p. 481.Google Scholar
  22. 22.
    Bastos de Figueireido, J.C. and Malta, C.P., Lyapunov Graph for Two-Parameter Map: Application to the Circle Map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1998, vol. 8, no. 2, pp. 281–293.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Arnold, V.I., Geometrical Methods in the Theory of Ordinary Differential Equations, New York: SpringerVerlag, 1988.CrossRefGoogle Scholar
  24. 24.
    Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer- Verlag, 1983.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. P. Kuznetsov
    • 1
    • 2
    Email author
  • I. R. Sataev
    • 1
  • J. V. Sedova
    • 1
    • 2
  1. 1.Institute of Radio-Engineering and ElectronicsRASSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations