Skip to main content
Log in

Inter- and intraindividual variability of the pupillary unrest index

Inter- und intraindividuelle Variabilität des Pupillenunruheindex

  • Original Article
  • Published:
Somnologie Aims and scope Submit manuscript

Abstract

Objective

The recording of slow pupillary oscillations in complete darkness is a promising approach for objective evaluation of daytime sleepiness at the physiological level. The aim of the present study was to analyze the magnitude of between- and within-subject variation of the pupillary unrest index (PUI) in a sample of healthy individuals.

Materials and methods

The present data were collected within the framework of a mobile phone study on possible effects of radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Pupillary behavior was monitored in 30 young healthy male volunteers (age 18–30 years) on ten non-consecutive experimental days at 11:00 a.m. and 04:00 p.m., using infrared video pupillography (compact integrated pupillograph, CIP). Since RF-EMF had no impact on the PUI, data were pooled for the present analysis.

Results

Mixed-model analyses of variance (ANOVAs) showed that the PUI was subject to higher interindividual variation as compared to intraindividual variation at both times of measurement. This resulted in intraclass correlation coefficients pointing to a substantial stability of these interindividual differences. A comparison of the PUI results with currently used cutoff values revealed that more than 50% of recordings from young, healthy, non-sleep-disturbed males showed values beyond the “normal” range.

Conclusion

The significant interindividual variability implies that the PUI is not only a state marker. Evaluations of such measurements should therefore consider the PUI as a possible trait marker to ensure comparability and correct interpretation.

Zusammenfassung

Zielsetzung

Die Registrierung von langsamen Pupillenbewegungen in kompletter Dunkelheit ist ein vielversprechendes Verfahren zur objektiven Bewertung von Tagesschläfrigkeit auf der physiologischen Ebene. Ziel der vorliegenden Untersuchung war die Analyse von inter- und intraindividueller Variabilität des Pupillenunruheindex (PUI) anhand einer Gruppe gesunder Personen.

Methodik

Die Daten wurden im Rahmen einer Mobilfunkstudie erhoben, in der ein möglicher Einfluss von elektromagnetischen Feldern auf das zentrale Nervensystem untersucht wurde. An 30 gesunden jungen Männern im Alter von 18 bis 30 Jahren wurde das Pupillenverhalten an zehn nicht aufeinander folgenden Terminen jeweils am Vormittag (11:00 Uhr) und am Nachmittag (16:00 Uhr) mittels der Infrarot-Video-Pupillographie (Compact Integrated Pupillograph, CIP) aufgezeichnet. Da in dieser Studie kein Expositionseffekt durch elektromagnetische Felder auf den PUI beobachtet werden konnte, wurden die Daten für die vorliegende Untersuchung zusammengefasst.

Ergebnisse

Die Mixed-Model-Varianzanalysen ergaben, dass dem PUI sowohl am Vor- als auch am Nachmittag eine höhere interindividuelle Variabilität im Vergleich zur intraindividuellen Variabilität zugrunde lag. Daraus konnten Intraklassen-Korrelationskoeffizienten berechnet werden, die auf eine beträchtliche Stabilität dieser interindividuellen Unterschiede hindeuteten. Bei Orientierung an den aktuell gültigen Grenzwerten sind die Ergebnisse von gesunden, nicht schlafgestörten jungen Erwachsenen in mehr als 50 % der Fälle als nicht „normal“ einzustufen.

Schlussfolgerung

Die signifikante interindividuelle Variabilität spricht dafür, dass der PUI nicht nur ein State-Merkmal darstellt. Bei Bewertungen dieser Ergebnisse sollte daher der PUI als mögliches Trait-Merkmal mit berücksichtigt werden, um eine Vergleichbarkeit und korrekte Interpretation sicherzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arand D, Bonnet M, Hurwitz T et al (2005) The clinical use of the MSLT and MWT. Sleep 28:123–144

    Article  PubMed  Google Scholar 

  2. Bremner FD (2012) Pupillometric evaluation of the dynamics of the pupillary response to a brief light stimulus in healthy subjects. Invest Ophthalmol Vis Sci 53:7343–7347

    Article  PubMed  Google Scholar 

  3. Buysse DJ, Reynolds CF, Monk TH et al (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193–213

    Article  CAS  PubMed  Google Scholar 

  4. Cluydts R, De Valck E, Verstraeten E et al (2002) Daytime sleepiness and its evaluation. Sleep Med Rev 6:83–96

    Article  PubMed  Google Scholar 

  5. Danker-Hopfe H, Kraemer S, Dorn H et al (2001) Time-of-day variations in different measures of sleepiness (MSLT, pupillography, and SSS) and their interrelations. Psychophysiology 38:828–835

    Article  CAS  PubMed  Google Scholar 

  6. Danker-Hopfe H, Dorn H, Bahr A et al (2011) Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep. J Sleep Res 20:73–81

    Article  PubMed  Google Scholar 

  7. Eggert T, Sauter C, Popp R et al (2012) The Pupillographic SleepinessTest in adults: effect of age, gender, and time of day on pupillometric variables. Am J Hum Biol 24:820–828

    Article  PubMed  Google Scholar 

  8. Eggert T, Sauter C, Dorn H et al (2015) Individual stability of sleep spindle characteristics in healthy young males. Somnol Schlafforsch Schlafmed 19:38–45

    Article  Google Scholar 

  9. Geisler P, Tracik F, Cronlein T et al (2006) The influence of age and sex on sleep latency in the MSLT-30 – a normative study. Sleep 29:687–692

    Article  PubMed  Google Scholar 

  10. Hirshkowitz H, Sharafkhaneh A (2017) Evaluating sleepiness. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier Saunders, St. Louis, pp 1651–1658

    Chapter  Google Scholar 

  11. Horne JA, Östberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    CAS  PubMed  Google Scholar 

  12. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545

    Article  CAS  PubMed  Google Scholar 

  13. Kraemer S, Danker-Hopfe H, Dorn H et al (2000) Time-of-day variations of indicators of attention: performance, physiologic parameters, and self-assessment of sleepiness. Biol Psychiatry 48:1069–1080

    Article  CAS  PubMed  Google Scholar 

  14. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  15. Lowenstein O, Feinberg R, Loewenfeld IE (1963) Pupillary movements during acute and chronic fatigue. Invest Ophthalmol 2:138–157

    Google Scholar 

  16. Lüdtke H, Wilhelm B, Adler M et al (1998) Mathematical procedures in data recording and processing of pupillary fatigue waves. Vision Res 38:2889–2896

    Article  PubMed  Google Scholar 

  17. Melamed S, Oksenberg A (2002) Excessive daytime sleepiness and risk of occupational injuries in non-shift daytime workers. Sleep 25:315–322

    Article  PubMed  Google Scholar 

  18. Merritt SL, Schnyders HC, Patel M et al (2004) Pupil staging and EEG measurement of sleepiness. Int J Psychophysiol 52:97–112

    Article  PubMed  Google Scholar 

  19. Peters T, Gruner C, Durst W et al (2014) Sleepiness in professional truck drivers measured with an objective alertness test during routine traffic controls. Int Arch Occup Environ Health 87:881–888

    Article  PubMed  Google Scholar 

  20. Regen F, Dorn H, Danker-Hopfe H (2013) Association between pupillary unrest index and waking electroencephalogram activity in sleep-deprived healthy adults. Sleep Med 14:902–912

    Article  PubMed  Google Scholar 

  21. Sauter C, Dorn H, Bahr A et al (2011) Effects of exposure to electromagnetic fields emitted by GSM 900 and WCDMA mobile phones on cognitive function in young male subjects. Bioelectromagnetics 32:179–190

    Article  PubMed  Google Scholar 

  22. Shahid A, Shen J, Shapiro CM (2010) Measurements of sleepiness and fatigue. J Psychosom Res 69:81–89

    Article  PubMed  Google Scholar 

  23. Tregear S, Reston J, Schoelles K et al (2010) Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. Sleep 33:1373–1380

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tryon WW (1975) Pupillometry: a survey of sources of variation. Psychophysiology 12:90–93

    Article  CAS  PubMed  Google Scholar 

  25. Tucker AM, Dinges DF, Van Dongen HP (2007) Trait interindividual differences in the sleep physiology of healthy young adults. J Sleep Res 16:170–180

    Article  PubMed  Google Scholar 

  26. Urschitz MS, Heine K, Brockmann PE et al (2013) Subjective and objective daytime sleepiness in schoolchildren and adolescents: results of a community-based study. Sleep Med 14:1005–1012

    Article  PubMed  Google Scholar 

  27. Walzl M, Hagen R, Prummer K (2007) Pupillometrische Untersuchungen auf Schläfrigkeit bei Berufskraftfahrern. Zentralbl Arbeitsmed 57:349–364 (German)

    Article  Google Scholar 

  28. Weil De Vega C, Durst W, Otto G et al (2005) Sleepy on the highway – a roadside study. Sleep Med 6(Suppl 2):193

    Google Scholar 

  29. Wilhelm B, Bittner E, Hofmann A et al (2015) Short-term reproducibility and variability of the pupillographic sleepiness test. Am J Hum Biol 27:862–866

    Article  PubMed  Google Scholar 

  30. Wilhelm B, Wilhelm H, Lüdtke H et al (1998) Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep 21:258–265

    CAS  PubMed  Google Scholar 

  31. Wilhelm B, Giedke H, Lüdtke H et al (2001) Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. J Sleep Res 10:1–7

    Article  CAS  PubMed  Google Scholar 

  32. Wilhelm B, Körner A, Heldmaier K et al (2001) Normwerte des pupillographischen Schläfrigkeitstests für Frauen und Männer zwischen 20 und 60 Jahren. Somnologie 5:115–120 (German)

    Article  Google Scholar 

  33. Wilhelm H, Wilhelm B (2003) Clinical applications of pupillography. J Neuroophthalmol 23:42–49

    Article  PubMed  Google Scholar 

  34. Wilhelm H, Lüdtke H, Wilhelm B (1998) Pupillographic sleepiness testing in hypersomniacs and normals. Albrecht Von Graefes Arch Klin Exp Ophthalmol 236:725–729

    Article  CAS  Google Scholar 

  35. Zung WW (1965) A self-rating depression scale. Arch Gen Psychiatry 12(1):63–70

    Article  CAS  PubMed  Google Scholar 

  36. Zung WW (1971) A rating instrument for anxiety disorders. Psychosomatics 12:371–379

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Eggert.

Ethics declarations

Conflict of interest

T. Eggert, C. Sauter, H. Dorn, A. Peter, M.-L. Hansen and H. Danker-Hopfe declare that they have no competing interests.

This human study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics committee of the Charite – University Medicine, Berlin. Each participant gave his written informed consent and was compensated for contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggert, T., Sauter, C., Dorn, H. et al. Inter- and intraindividual variability of the pupillary unrest index. Somnologie 21, 187–192 (2017). https://doi.org/10.1007/s11818-017-0128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-017-0128-2

Keywords

Schlüsselwörter

Navigation