Somnologie

, Volume 21, Issue 2, pp 93–100 | Cite as

Unobtrusive acquisition of cardiorespiratory signals

Available techniques and perspectives for sleep medicine
  • S. Zaunseder
  • A. Henning
  • D. Wedekind
  • A. Trumpp
  • H. Malberg
Übersichten
  • 170 Downloads

Abstract

Over the past years, various systems and techniques enabling unobtrusive/minimally obtrusive acquisition of physiological signals have evolved. These systems and techniques open up novel opportunities for sleep medicine. This work provides an overview of unobtrusive systems and techniques to monitor cardiorespiratory function. We present basic principles of mechanical, radar-based, optical, and electrical measurements, and present concrete examples focused on how such systems and techniques can be used for sleep medicine. This work demonstrates the high potential of unobtrusive acquisition. Furthermore, it highlights the need for a standardized evaluation of the available techniques and demonstrates the demand for sleep-specific developments of available techniques in interdisciplinary collaborations.

Keywords

Cardiac function Respiratory function Unobtrusive monitoring Non-contact signal acquisition Sleep monitoring 

Kontaktlose Erfassung kardiorespiratorischer Signale

Verfügbare Verfahren und Perspektiven für die Schlafmedizin

Zusammenfassung

In den letzten Jahren wurden verschiedene Systeme und Verfahren entwickelt, die es ermöglichen, kontaktlos bzw. minimal kontaktgebunden physiologische Signale zu erfassen. Die aktuellen Entwicklungen eröffnen für die Schlafmedizin neue Möglichkeiten. In dieser Arbeit wird ein Überblick über kontaktlose Techniken zum Monitoring der kardiorespiratorischen Aktivität gegeben. Die Autoren stellen die Grundlagen mechanischer, radarbasierter, optischer und elektrischer Messverfahren vor und geben konkrete Beispiele mit einem Fokus darauf, wie eine Nutzung für die Schlafmedizin aussehen kann. Es zeigt sich, dass die heutigen Systeme vielversprechende Möglichkeiten der Signalerfassung bieten, hinsichtlich zukünftiger Anwendungen allerdings eine standardisierte Evaluation verfügbarer Techniken und Weiterentwicklungen für den spezifischen Bedarf der Schlafmedizin in interdisziplinären Zusammenarbeiten erforderlich ist.

Schlüsselwörter

Herzfunktion Atemfunktion Patientenfreundliches Monitoring Kontaktlose Signalerfassung Schlaf 

Notes

Compliance with ethical guidelines

Conflict of interest

S. Zaunseder, A. Henning, D. Wedekind, A. Trumpp, and H. Malberg declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants from whom identifying information is included in this article.

References

  1. 1.
    Al-Naji A, Gibson K, Lee S‑H, Chahl J (2017) Real time apnoea monitoring of children using the Microsoft Kinect sensor: a pilot study. Sensors 17:286. doi: 10.3390/s17020286 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ben-Ari J, Zimlichman E, Adi N, Sorkine P (2010) Contactless respiratory and heart rate monitoring: validation of an innovative tool. J Med Eng Technol 34:393–398. doi: 10.3109/03091902.2010.503308 CrossRefPubMedGoogle Scholar
  3. 3.
    Bianchi AM, Mendez MO, Cerutti S (2010) Processing of signals recorded through smart devices: sleep-quality assessment. IEEE Trans Inf Technol Biomed 14:741–747CrossRefPubMedGoogle Scholar
  4. 4.
    Bruser C, Antink CH, Wartzek T et al (2015) Ambient and unobtrusive cardiorespiratory monitoring techniques. IEEE Rev Biomed Eng 8:30–43. doi: 10.1109/RBME.2015.2414661 CrossRefPubMedGoogle Scholar
  5. 5.
    Brüser C, Stadlthanner K, de Waele S, Leonhardt S (2011) Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans Inf Technol Biomed 15:778–786CrossRefPubMedGoogle Scholar
  6. 6.
    De Chazal P, Fox N, O’Hare E et al (2011) Sleep/wake measurement using a non-contact biomotion sensor. J Sleep Res 20:356–366. doi: 10.1111/j.1365-2869.2010.00876.x CrossRefPubMedGoogle Scholar
  7. 7.
    Couderc J, Kyal S, Mestha LK, Xu B (2014) Detection of atrial fibrillation using contactless facial video monitoring. Heart Rhythm. doi: 10.1016/j.hrthm.2014.08.035 PubMedGoogle Scholar
  8. 8.
    Heuer S (2011) Ambiente kapazitive EKG-Messung Elektroden, Systeme und Konzepte. Karlsruher Institut für Technologie (KIT), KarlsruheGoogle Scholar
  9. 9.
    Huelsbusch M, Blazek V (2002) Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI. In: Clough AV, Chen C‑T (eds) Proc. SPIE, p 110Google Scholar
  10. 10.
    Javaid AQ, Noble CM, Rosenberg R, Weitnauer MA (2015) Towards sleep apnea screening with an under-the-mattress IR-UWB radar using machine learning. 2015 IEEE 14th Int. Conf. Mach. Learn. Appl. IEEE, pp 837–842Google Scholar
  11. 11.
    Kagawa M, Tojima H, Matsui T (2016) Non-contact diagnostic system for sleep apnea-hypopnea syndrome based on amplitude and phase analysis of thoracic and abdominal Doppler radars. Med Biol Eng Comput 54:789–798. doi: 10.1007/s11517-015-1370-z CrossRefPubMedGoogle Scholar
  12. 12.
    Kortelainen JM, Mendez MO, Bianchi AM et al (2010) Sleep staging based on signals acquired through bed sensor. IEEE Trans Inf Technol Biomed 14:776–785. doi: 10.1109/TITB.2010.2044797 CrossRefPubMedGoogle Scholar
  13. 13.
    Lee HJ, Lee SM, Lee KM, Park KS (2011) Performance Evaluation of Electrocardiogram Measured Using Capacitive Textiles on a Bed. In: Proc. Int. Conf. Biomed. Electr. Dev. Rome, Italy, pp 436–439Google Scholar
  14. 14.
    Lempe G, Zaunseder S, Wirthgen T et al (2013) Kamerabasierte Erfassung kardiorespiratorischer Signale. Tech Mess 80:179–184. doi: 10.1524/teme.2013.0029 CrossRefGoogle Scholar
  15. 15.
    Lim YG, Kim KK, Park KS (2007) ECG recording on a bed during sleep without direct skin-contact. IEEE Trans Biomed Eng 54:718–725. doi: 10.1109/TBME.2006.889194 CrossRefPubMedGoogle Scholar
  16. 16.
    Migliorini M, Kortelainen JM, Pärkkä J et al (2014) Monitoring nocturnal heart rate with bed sensor. Methods Inf Med 53:308–313. doi: 10.3414/ME13-02-0053 CrossRefPubMedGoogle Scholar
  17. 17.
    Murthy R, Pavlidis I, Tsiamyrtzis P (2004) Touchless monitoring of breathing function. In: Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEMBS ’04, pp 1196–1199CrossRefGoogle Scholar
  18. 18.
    Nguyen P, Transue S, Choi M‑H et al (2016) WiKiSpiro. In: Proc. Eighth Wirel. Students, by Students, Students Work. ACM Press, New York, pp 27–29CrossRefGoogle Scholar
  19. 19.
    Penzel T, Kantelhardt JW, Bartsch RP et al (2016) Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front Physiol 7:460. doi: 10.3389/fphys.2016.00460 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rahman T, Adams AT, Ravichandran RV et al (2015) DoppleSleep. In: Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. ACM Press, New York, pp 39–50CrossRefGoogle Scholar
  21. 21.
    Rasche S, Trumpp A, Waldow T et al (2016) Camera-based photoplethysmography in critical care patients. Clin Hemorheol Microcirc 64:77–90. doi: 10.3233/CH-162048 CrossRefPubMedGoogle Scholar
  22. 22.
    Spinelli E, Haberman M (2010) Insulating electrodes: a review on biopotential front ends for dielectric skin-electrode interfaces. Physiol Meas 31:S183–S198. doi: 10.1088/0967-3334/31/10/S03 CrossRefPubMedGoogle Scholar
  23. 23.
    Tarassenko L, Villarroel M, Guazzi A et al (2014) Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiol Meas 35:807–831. doi: 10.1088/0967-3334/35/5/807 CrossRefPubMedGoogle Scholar
  24. 24.
    Trumpp A, Schell J, Malberg H, Zaunseder S (2016) Vasomotor assessment by camera-based photoplethysmography. Curr Dir Biomed Eng 2:199–202. doi: 10.1515/cdbme-2016-0045 Google Scholar
  25. 25.
    Vehkaoja A, Rajala S, Kumpulainen P, Lekkala J (2013) Correlation approach for the detection of the heartbeat intervals using force sensors placed under the bed posts. J Med Eng Technol 37:327–333. doi: 10.3109/03091902.2013.807523 CrossRefPubMedGoogle Scholar
  26. 26.
    Verkruysse W, Svaasand LO, Stuart Nelson J (2008) Remote plethysmographic imaging using ambient light. Opt Express 16:21434–21445CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wedekind D, Malberg H, Zaunseder S (2013) Cascaded output selection for processing of capacitive electrocardiograms by means of independent component analysis. In: 2013 Work. Sens. Data Fusion Trends, Solut. Appl. IEEE, pp 1–6CrossRefGoogle Scholar
  28. 28.
    Zhao W, Ni H, Zhou X et al (2015) Identifying sleep apnea syndrome using heart rate and breathing effort variation analysis based on ballistocardiography. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2015, pp 4536–4539 doi: 10.1109/EMBC.2015.7319403 Google Scholar
  29. 29.
    Weinreich G, Terjung S, Wang Y et al (2014) Validierung von SleepMinder® als Screeninggerät für die obstruktive Schlafapnoe. Somnologie (Berl) 18:238–242. doi: 10.1007/s11818-014-0690-9 CrossRefGoogle Scholar
  30. 30.
    Wieringa FP, Mastik F, van der Steen AFW (2005) Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology. Ann Biomed Eng 33:1034–1041. doi: 10.1007/s10439-005-5763-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Xia J, Siochi RA (2012) A real-time respiratory motion monitoring system using KINECT: proof of concept. Med Phys 39:2682–2685. doi: 10.1118/1.4704644 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao F, Li M, Qian Y, Tsien JZ (2013) Remote measurements of heart and respiration rates for telemedicine. PLOS ONE 8:e71384. doi: 10.1371/journal.pone.0071384 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zheng Y‑L, Ding X‑R, Poon CCY et al (2014) Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng 61:1538–1554. doi: 10.1109/TBME.2014.2309951 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Institute of Biomedical EngineeringTU DresdenDresdenGermany

Personalised recommendations