Advertisement

Somnologie

, Volume 21, Issue 4, pp 265–272 | Cite as

Sleep-disordered breathing and severe aortic stenosis

  • Z. M. He
  • C. Schoebel
  • T. Penzel
  • I. Fietze
  • Z. Ye
Review
  • 94 Downloads

Abstract

Background

Aortic stenosis (AS) has been associated with sleep-disordered breathing (SDB), obstructive sleep apnea (OSA), and central sleep apnea (CSA). In patients undergoing transcatheter aortic valve implantation (TAVI), CSA may contribute to sudden cardiac death. Knowledge regarding complications and management of patients with TAVI and CSA is limited. This review defines the clinical manifestations of SDB, especially CSA, associated with AS and TAVI therapy. Prevalence, mechanisms, risk factors, and treatment options are reported.

Methods

Pubmed, Medline, and the Cochrane Database of Systematic Reviews were searched for prospective and retrospective studies, as well as case reports, in which SDB in AS was confirmed by polysomnography. Apnea was defined as a >90% reduction of airflow from baseline for >10 s; hypopnea as a >30% reduction in airflow with ≥4% O2 desaturation; apnea–hypopnea index (AHI) as the number of apnea and hypopnea episodes/h of sleep. AHI >5/h defined SDB. If the recording showed more than 50% central apnea events, this was defined as CSA; otherwise as OSA.

Results

Five studies reporting on 299 patients were included. Patients with severe AS had a high prevalence of SDB (235/299; 78.6%). In AS patients, CSA had a prevalence of 105/251 (41.8%) and OSA of 93/248 (37.5%). Studies reported a strong association with SDB severity. TAVI for severe aortic valve stenosis improved CSA in two studies but had no impact on OSA. Positive airway pressure therapy appears the best treatment for CSA in patients with TAVI. Continuous positive airway pressure (CPAP) may be ineffective in eliminating central apnea or even increase CSA. Adaptive servo ventilation (ASV) and bilevel positive airway pressure (BPAP) ventilation are alternative treatments.

Conclusion

The prevalence of SDB in AS patients ranges from 71 to 95%. The most important risk factor for higher CSA severity in AS patients was heart failure (HF). ASV and CPAP have demonstrated efficacy in treating SDB in patients with HF. Limited data and clinical experience are available for ASV treatment of patients with AS-associated SDB. Prospective studies on quality life and ASV treatment in these patients are needed.

Keywords

Sleep apnea, obstructive Sleep apnea, central Transcatheter aortic valve implantation Heart failure Polysomnography 

Abbreviations

SDB

Sleep-disordered breathing

AS

Aortic stenosis

OSA

Obstructive sleep apnea

CSA

Central sleep apnea

CSR

Cheyne–Stokes respiration

HF-REF

Heart failure with reduced left ventricular function

TAVI

Transcatheter aortic valve implantation

SAVR

Surgical aortic valve replacement

AVR

Aortic valve replacement

BAV

Balloon aortic valvotomy

ASV

Adaptive servo ventilation

BPAP

Bilevel positive airway pressure

EPAP

Expiratory positive airway pressure

T90

Time spent with oxygen saturation 90%

SU-AVR

Sutureless aortic valve replacement

CPB

Cardiopulmonary bypass

HF

Heart failure

BP

Blood pressure

CHF

Chronic heart failure

LV

Left ventricular

SPAP

Systolic pulmonary pressure

QoL

Quality of life

PPM

Permanent pacemaker

BNP

Brain natriuretic peptide

Schlafbezogene Atmungsstörungen und schwere Aortenstenose

Zusammenfassung

Fragestellung

Die Aortenstenose (AS) ist mit schlafbezogenen Atmungsstörungen (SDB), obstruktiver Schlafapnoe (OSA) und zentraler Schlafapnoe (CSA) assoziiert. Bei Patienten mit Transkatheter-Aortenklappenimplantation (TAVI) stellt eine CSA ein Risiko für plötzlichen Herztod dar. Das Wissen bezüglich der Komplikationen und dem Management von Patienten mit TAVI und CSA ist begrenzt. Diese Übersichtarbeit definiert die klinischen Bilder der SDB, besonders der CSA, im Zusammenhang mit AS und TAVI. Prävalenzen, Mechanismen, Risikofaktoren und Behandlungsoptionen werden erörtert.

Methoden

Es wurde eine Literatursuche bei Pubmed (1986–2016), Medline und der Cochrane-Datenbank systematischer Reviews (Januar 2005–2016) hinsichtlich prospektiver und retrospektiver Studien sowie Fallberichten zu AS mit polysomnographischem Nachweis von SDB durchgeführt. Apnoe war eine Reduktion des Luftflusses um >90 % vom Ausgangswert für >10 s Dauer. Hypopnoe war eine Reduktion des Luftflusses >30 % bei paralleler Sauerstoffentsättigung ≥4 %. Der Apnoe-Hypopnoe-Index (AHI) ist die Anzahl der Apnoen und Hypopnoen je Stunde Schlaf, und bei einem AHI >5/h werden SDB diagnostiziert. Liegen mehr als 50 % zentrale Apnoen vor, wird dies als CSA gewertet, anderenfalls als OSA.

Ergebnisse

Die Literatursuche ergab 5 Studien mit insgesamt 299 Patienten. Patienten mit schwerer AS wiesen eine hohe Prävalenz von SDB auf (235 von 299; 78,6 %). Eine CSA fand sich bei 105 von 251 (41,8 %) Patienten und eine OSA bei 93 von 248 (37,5 %) Patienten. Den Studien zufolge bestand eine enge Assoziation mit dem Schweregrad der SDB. Eine TAVI bei schwerer AS bewirkte eine Besserung der CSA in 2 Studien, hatte aber keinen Effekt auf die OSA. Eine Positivdruckbeatmung scheint die beste Therapie der CSA bei Patienten mit TAVI zu sein. Die kontinuierliche Positivdruckbeatmung mit CPAP erscheint nicht effektiv zur Beseitigung zentraler Apnoen und verstärkt mitunter sogar die CSA. Die adaptive Servoventilation (ASV) und die Bilevel-Positivdruckbeatmung (BPAP) werden als Therapiealternativen in Erwägung gezogen.

Schlussfolgerung

Es zeigte sich eine Prävalenz für SDB bei AS-Patienten zwischen 71 und 95 %. rWichtigste Risikofaktor für schwerere CSA bei den AS-Patienten war das Vorliegen einer Herzinsuffizienz. Bei der Therapie der SDB bei Patienten mit Herzinsuffizienz waren ASV und CPAP erfolgreich. Es liegen jedoch nur wenige Daten und wenig klinische Erfahrung mit der ASV-Behandlung bei Patienten mit SDB und AS vor. Prospektive Studien zur Lebensqualität und zur Behandlung dieser Patienten mit ASV sind erforderlich.

Schlüsselwörter

Obstruktive Schlafapnoe Zentrale Schlafapnoe Transkatheter-Aortenklappenimplantation Herzinsuffizienz Polysomnographie 

Notes

Funding

Funding was provided by National Natural Science Foundation of China (81360016)

Compliance with ethical guidelines

Conflict of interest

Z.M. He, C. Schoebel, T. Penzel, I. Fietze, and Z. Ye declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Shahar E, Whitney CW, Redline S et al (2001) Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163(1):19–25CrossRefPubMedGoogle Scholar
  2. 2.
    Berry RB, Brooks R, Gamaldo CE et al (2016) Vaughn BV for the American Academy of Sleep Medicine. The AASM Manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.3. American Academy of Sleep Medicine, DarienGoogle Scholar
  3. 3.
    Oldenburg O, Lamp B, Faber L et al (2007) Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257CrossRefPubMedGoogle Scholar
  4. 4.
    Lévy P, Pépin J‑L, Tamisier R et al (2007) Prevalence and impact of central sleep apnea in heart failure. Sleep Med Clin 2:615–621CrossRefGoogle Scholar
  5. 5.
    Oldenburg O, Bitter T, Wiemer M et al (2009) Pulmonary capillary wedge pressure and pulmonary arterial pressure in heart failure patients with sleep-disordered breathing. Sleep Med 10:726–730CrossRefPubMedGoogle Scholar
  6. 6.
    Arzt M, Woehrle H, Oldenburg O et al (2016) Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the SchlaHF Registry. JACC Heart Fail 4(2):116–125CrossRefPubMedGoogle Scholar
  7. 7.
    Javaheri S, Winslow D, McCullough P et al (2015) The use of a fully automated automatic adaptive servo ventilation algorithm in the acute and chronic treatment of central sleep apnea. Chest 148:1454–1461CrossRefPubMedGoogle Scholar
  8. 8.
    Cowie MR, Woehrle H, Wegscheider K et al (2013) Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure. Eur J Heart Fail 15(8):937–943CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bradley TD, Holloway RM, McLaughlin PR et al (1992) Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis 145:377–382CrossRefPubMedGoogle Scholar
  10. 10.
    De Hoyos A, Liu PP, Benard DC et al (1995) Haemodynamic effects of continuous positive airway pressure in humans with normal and impaired left ventricular function. Clin Sci 88:173–178CrossRefPubMedGoogle Scholar
  11. 11.
    Grace MP, Greenbaum DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 10:358–360CrossRefPubMedGoogle Scholar
  12. 12.
    Philip-Joët FF, Paganelli FF, Dutau HL et al (1999) Hemodynamic effects of bilevel nasal positive airway pressure ventilation in patients with heart failure. Respiration 66:136–143CrossRefPubMedGoogle Scholar
  13. 13.
    Lenique F, Habis M, Lofaso F et al (1997) Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med 155:500–505CrossRefPubMedGoogle Scholar
  14. 14.
    Acosta B, DiBenedetto R, Rahimi A et al (2000) Hemodynamic effects of noninvasive bilevel positive airway pressure on patients with chronic congestive heart failure with systolic dysfunction. Chest 118:1004–1009CrossRefPubMedGoogle Scholar
  15. 15.
    Gray AJ, Goodacre S, Newby DE et al (2009) A multi centre randomised controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the 3CPO trial. Health Technol Assess 13:1–106CrossRefGoogle Scholar
  16. 16.
    Oldenburg O, Fox H, Bitter T, Horstkotte D (2017) Adaptive servoventilation to treat sleep-disordered breathing in cardiac patients. Somnologie 21:1–2. doi: 10.1007/s11818-017-0100-1 Google Scholar
  17. 17.
    Oldenburg O, Spießhöfer J, Fox H et al (2015) Performance of conventional and enhanced adaptive servoventilation (ASV) in heart failure patients with central sleep apnea who have adapted to conventional ASV. Sleep Breath 19(3):795–800CrossRefPubMedGoogle Scholar
  18. 18.
    Sharma BK, Bakker JP, McSharry DG et al (2012) Adaptive servoventilation for treatment of sleep- disordered breathing in heart failure: a systematic review and meta-analysis. Chest 142:1211–1221CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nkomo VT, Gardin JM, Skelton TN et al (2006) Burden of valvular heart diseases: a population-based study. Lancet 368(9540):1005–1011CrossRefPubMedGoogle Scholar
  20. 20.
    Otto CM, Lind BK, Kitzman DW et al (1999) Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 341:142–147CrossRefPubMedGoogle Scholar
  21. 21.
    Ross J, Braunwald E (1968) Aortic stenosis. Circulation 38(1):61–67PubMedGoogle Scholar
  22. 22.
    Abe H, Takahashi M, Yaegashi H et al (2009) Valve repair improves central sleep apnea in heart failure patients with valvular heart diseases. Circ J 73(11):2148–2153CrossRefPubMedGoogle Scholar
  23. 23.
    Prinz C, Bitter T, Oldenburg O et al (2010) Sleep apnoea in severe aortic stenosis. Postgrad Med J 87(1029):458–462CrossRefGoogle Scholar
  24. 24.
    Linhart M, Pabst S, Fistera R et al (2013) Transcatheter valve implantation improves central sleep apnoea in severe aortic stenosis. Euro Interv 9(8):923–928Google Scholar
  25. 25.
    Dimitriadis Z, Wiemer M, Scholtz W et al (2013) Sleep-disordered breathing in patients undergoing transfemoral aortic valve implantation for severe aortic stenosis. Clin Res Cardiol 102:895–903CrossRefPubMedGoogle Scholar
  26. 26.
    Linhart M, Sinning J‑M, Ghanem A et al (2015) Prevalence and impact of sleep disordered breathing in patients with severe aortic stenosis. PLOS ONE 10(7):1–12CrossRefGoogle Scholar
  27. 27.
    Keymel S, Hellhammer K, Zeus T et al (2015) Severe aortic valve stenosis in the elderly: high prevalence of sleep-related breathing disorders. Clin Interv Aging 10:1451–1456PubMedPubMedCentralGoogle Scholar
  28. 28.
    Stewart BF, Siscovick D, Lind BK et al (1997) Clinical factors associated with calcific aortic valve disease. J Am Coll Cardiol 29:630–634CrossRefPubMedGoogle Scholar
  29. 29.
    Czarny MJ, Resar JR (2014) Diagnosis and management of valvular aortic stenosis. Clinical medicine insights. Cardiology 8(s1):15–24PubMedPubMedCentralGoogle Scholar
  30. 30.
    Katayama M, Chaliki HP (2016) Diagnosis and management of patients with asymptomatic severe aortic stenosis. World J Cardiol 8(2):192–200CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kodali SK, Williams MR, Smith CR et al (2012) PARTNER Trial Investigators. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366:1686–1695CrossRefPubMedGoogle Scholar
  32. 32.
    Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991CrossRefPubMedGoogle Scholar
  33. 33.
    Ozkan A, Kapadia S, Tuzcu M et al (2011) Assessment of left ventricular function in aortic stenosis. Nat Rev Cardiol 8:494–501CrossRefPubMedGoogle Scholar
  34. 34.
    Delgado V, Ng CT (2012) Assessment of left ventricular systolic function in aortic stenosis and prognostic implications. Eur Heart J Cardiovasc Imaging 13:805–807CrossRefPubMedGoogle Scholar
  35. 35.
    Chambers J (2006) The left ventricle in aortic stenosis: evidence for the use of ACE inhibitors. Heart 92:420–423CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Steadman CD, Jerosch-Herold M, Grundy B et al (2012) Determinants and functional significance of myocardial perfusion reserve in severe aortic stenosis. JACC Cardiovasc Imaging 5:182–189CrossRefPubMedGoogle Scholar
  37. 37.
    Salcedo EE, Korzik DH, Currie PJ et al (1989) Determinants of left ventricular hypertrophy in aortic valve stenosis. Cleve Clin J Med 56:590–596CrossRefPubMedGoogle Scholar
  38. 38.
    Carroll JD, Carroll EP, Feldman T et al (1992) Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 86:1099–1107CrossRefPubMedGoogle Scholar
  39. 39.
    Hachicha Z, Dumesnil JG, Bogaty P et al (2007) Paradoxical low flow, low gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 115:2856–2864CrossRefPubMedGoogle Scholar
  40. 40.
    Duncan AI, Lowe BS, Garcia MJ et al (2008) Influence of concentric left ventricular remodeling on early mortality after aortic valve replacement. Ann Thorac Surg 85:2030–2039CrossRefPubMedGoogle Scholar
  41. 41.
    Mihaljevic T, Nowicki ER, Rajeswaran J et al (2008) Survival after valve replacement for aortic stenosis: implications for decision making. J Thorac Cardiovasc Surg 135:1270–1278CrossRefPubMedGoogle Scholar
  42. 42.
    Rezq A, Basavarajaiah S, Latib A et al (2012) Incidence, management, and outcomes of cardiac tamponade during transcatheter aortic valve implantation: a single-center study. JACC Cardiovasc Interv 5:1264–1272CrossRefPubMedGoogle Scholar
  43. 43.
    Loeser H, Wittersheim M, Puetz K et al (2013) Potential complications of transcatheter aortic valve implantation (TAVI) – an autopsy perspective. Cardiovasc Pathol 22:319–323CrossRefPubMedGoogle Scholar
  44. 44.
    Kahlert P, Al-Rashid F, Plicht B et al (2013) Incidence, predictors, origin and prevention of early and late neurological events after transcatheter aortic valve implantation (TAVI): a comprehensive review of current data. J Thromb Thrombolysis 35:436–449CrossRefPubMedGoogle Scholar
  45. 45.
    Van der Boon RM, Nuis RJ, Benitez LM et al (2013) Frequency, determinants and prognostic implications of infectious complications after transcatheter aortic valve implantation. Am J Cardiol 112:104–110CrossRefPubMedGoogle Scholar
  46. 46.
    Khatri PJ, Webb JG, Rodés-Cabau J et al (2013) Adverse effects associated with transcatheter aortic valve implantation: a meta-analysis of contemporary studies. Ann Intern Med 158:35–46CrossRefPubMedGoogle Scholar
  47. 47.
    Phan K, Tsai YC, Niranjan N et al (2015) Sutureless aortic valve replacement: a systematic review and meta-analysis. Ann Cardiothorac Surg 4(2):100–111PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zeeshan A, Krishnaswamy A, Tuzcu EM et al (2015) Transcatheter aortic valve replacement: History and current indications. Cleve Clin J Med 82(2):S6–S10CrossRefPubMedGoogle Scholar
  49. 49.
    Rashedi N, Otto CM (2015) Aortic stenosis: changing disease concepts. J Cardiovasc Ultrasound 23(2):59–69CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bradley TD, Floras JS (2003) Sleep apnea and heart failure: Part I: obstructive sleep apnea. Circulation 107(12):1671–1678CrossRefPubMedGoogle Scholar
  51. 51.
    Agmon Y, Khandheria BK, Meissner I et al (2001) Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study. J Am Coll Cardiol 38(3):827–834CrossRefPubMedGoogle Scholar
  52. 52.
    Yumino D, Bradley TD (2008) Central sleep apnea and Cheyne-Stokes respiration. Proc Am Thorac Soc 5(2):226–236CrossRefPubMedGoogle Scholar
  53. 53.
    Solin P, Bergin P, Richardson M et al (1999) Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation 99(12):1574–1579CrossRefPubMedGoogle Scholar
  54. 54.
    Yumino D, Redolfi S, Ruttanaumpawan P et al (2010) Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation 121(14):1598–1605CrossRefPubMedGoogle Scholar
  55. 55.
    Naughton MT, Sanner BM (2006) Cardiovascular complication of sleep related breathing disorders. In: Randerath AJ, Sanner BH, Somers VK (eds) Sleep apnea. Progress in respiratory research. Karger, BaselGoogle Scholar
  56. 56.
    Amonna K, Storteckyb S, Brinksa H et al (2012) Quality of life in high-risk patients: comparison of transcatheter aortic valve implantation with surgical aortic valve replacement. Eur J Cardiothorac Surg 43:34–42CrossRefGoogle Scholar
  57. 57.
    Damy T, Margarit L, Noroc A et al (2012) Prognostic impact of sleep-disordered breathing and its treatment with nocturnal ventilation for chronic heart failure. Eur J Heart Fail 14:1009–1019CrossRefPubMedGoogle Scholar
  58. 58.
    Sinning JM, Hammerstingl C, Vasa-Nicotera M et al (2012) Aortic regurgitation index defines severity of peri-prosthetic regurgitation and predicts outcome in patients after transcatheter aortic valve implantation. J Am Coll Cardiol 59(13):1134–1141CrossRefPubMedGoogle Scholar
  59. 59.
    Green P, Woglom AE, Genereux P et al (2012) The impact of frailty statuson survival after transcatheter aortic valve replacement in older adults with severe aortic stenosis: a single-center experience. JACC Cardiovasc Interv 5:974–981CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sinning JM, Horack M, Grube E et al (2012) The impact of peripheral arterial disease on early outcome after transcatheter aortic valve implantation: results from the German Transcatheter Aortic Valve Interventions Registry. Am Heart J 164:102–110CrossRefPubMedGoogle Scholar
  61. 61.
    Cowie MR, Woehrle H, Wegscheider K et al (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373:1095–1105CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    El Shayeb M, Topfer LA, Stafinski T et al (2014) Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: a systematic review and meta- analysis. CMAJ 186(1):E25–E51CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fisher MR, Forfia PR, Chamera E et al (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179(7):615–621CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • Z. M. He
    • 1
  • C. Schoebel
    • 2
  • T. Penzel
    • 2
  • I. Fietze
    • 2
  • Z. Ye
    • 1
  1. 1.Department of Respiratory and Critical Care MedicineKaramay Central HospitalKaramayChina
  2. 2.Sleep Medicine CenterCharité University HospitalBerlinGermany

Personalised recommendations