Skip to main content

Herzfrequenz und EKG in der Polysomnographie

Heart rate and ECG in polysomnography

Zusammenfassung

Die Aufzeichnung des Elektrokardiogramms (EKG) und der Herzfrequenz sind integrale Bestandteile der kardiorespiratorischen Polysomnographie. In Ergänzung zu den neurophysiologischen Parametern erlauben diese Signale eine Bewertung der autonomen Regulation während des Schlafs. Eine Auswertung des nächtlichen EKG in Bezug auf zyklische Schwankungen der Herzfrequenz kombiniert mit atmungsabhängigen Veränderungen der EKG-Morphologie (Amplitude der R-Zacke, T-Welle) erlaubt ein zuverlässiges Erkennen von schlafbezogenen Atmungsstörungen. Eine Auswertung der Schlag-zu-Schlag-Regulation der Herzfrequenz erlaubt eine Abschätzung der Schlafstadien aufgrund der grundsätzlich verschiedenen Regulation des autonomen Nervensystems im Tiefschlaf und im REM-Schlaf. Auch Übergänge vom Wachen in den Schlaf sind aus dem Verlauf der Herzfrequenz ablesbar.

In diesem Beitrag wird die technische Entwicklung der Analyse im historischen Ablauf von 1980 bis 2015 dargestellt sowie der sich aus der technischen Entwicklung ergebende physiologische und pathophysiologische Erkenntnisgewinn gezeigt.

Abstract

The recording of ECG and heart rate are indispensable parameters of cardiorespiratory polysomnography. Complementing neurophysiological signals this allows an assessment of the autonomous nervous regulation during sleep. An evaluation of the nocturnal ECG is possible in terms of cyclical variations of heart rate and in terms of respiration modulated changes of ECG morphology (amplitude of R wave and T wave). This provides a reliable estimation of sleep disordered breathing. The autonomous nervous system is regulated in a totally different way during slow wave sleep and during REM sleep. An assessment of beat-to-beat variability of heart rate allows deriving sleep stages based on the difference in autonomous nervous system regulation. In addition the transitions from wakefulness to sleep can be tracked to some degree by an analysis of heart rate variability.

This paper presents the technical development of the analysis in a historical sequence from 1980 to 2015. Linked to this the increase in physiological and pathophysiological knowledge derived from the technical developments is presented.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    CAS  Article  PubMed  Google Scholar 

  2. Bartsch R, Kantelhardt JW, Penzel T, Havlin S (2007) Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys Rev Lett 98:054102

    Article  PubMed  Google Scholar 

  3. Bartsch RP, Schumann AY, Kantelhardt JW, Penzel T, Ivanov PC (2012) Phase transitions in physiologic coupling. Proc Natl Acad Sci 109:10181–10186

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, Vaughn BV for the American Academy of Sleep Medicine (2014) The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology and technical specifications, Version 2.1. Aufl. American Academy of Sleep Medicine, Darien, IL

    Google Scholar 

  5. Bunde A, Havlin S, Kantelhardt JW, Penzel T, Peter JH, Voigt K (2000) Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys Rev Lett 85:3736–3739

    CAS  Article  PubMed  Google Scholar 

  6. Caples SM, Rosen CL, Shen WK, Gami AS, Cotts W, Adams M, Dorostkar P, Shivkumar K, Somers VK, Morgenthaler TI, Stepanski EJ, Iber C (2007) The scoring of cardiac events during sleep. J Clin Sleep Med 3:147–154

    PubMed  Google Scholar 

  7. De Chazal P, Heneghan C, McNicholas WT (2009) Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Phil Trans R Soc A 367:369–389

    Article  PubMed  Google Scholar 

  8. Glos M, Fietze I, Blau A, Baumann G, Penzel T (2014) Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness. Physiol Behav 125:45–53

    CAS  Article  PubMed  Google Scholar 

  9. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet Components of a new research resource for complex physiologic signals. Circulation 101:e215–e220

    CAS  Article  PubMed  Google Scholar 

  10. Guilleminault C, Connolly S, Winkle R et al (1984) Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 8369:126–131

    Article  Google Scholar 

  11. Guilleminault C, Tilkian A, Dement WC (1976) The sleep apnea syndromes. Annu Rev Med 27:465–484

    CAS  Article  PubMed  Google Scholar 

  12. C. Huygens, Horologium Oscillatorium: sive de motu pendulorum ad horologia aptato demostrationes geometricae, 1673

  13. Ivanov PC, Rosenblum MG, Peng CK, Mietus J, Havlin S, Stanley HE, Goldberger AL (1996) Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383:323–327

    CAS  Article  PubMed  Google Scholar 

  14. Koepchen HP, Thurau K (1959) Über die Entstehungsbedingungen der atemsynchronen Schwankungen des Vagustonus (Respiratorische Arrhythmie). Pflügers Arch 269:10–30

    CAS  Article  PubMed  Google Scholar 

  15. Moody GB, Mark RG, Zoccola A et al (1986) Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol 13:507–510

    Google Scholar 

  16. Müller A, Riedl M, Penzel T, Kurths J, Wessel N (2014) Ereignisbasierte Charakterisierung kardiovaskulärer Interaktionen während des Schlafs. Somnologie 18:243–251

    Article  Google Scholar 

  17. Müller A, Riedl M, Wessel N, Kurths J, Penzel T (2012) Methoden zur Analyse kardiorespiratorischer und kardiovaskulärer Kopplungen. Somnologie 16:24–31

    Article  Google Scholar 

  18. Parati G, Saul JP, Di Rienzo M, Mancia G (1995) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25:1276–1286

    CAS  Article  PubMed  Google Scholar 

  19. Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19

    CAS  Article  PubMed  Google Scholar 

  20. Penzel T, Amend G, Meinzer K, Peter JH, von Wichert P (1990) MESAM: A heart rate and snoring recorder for detection of obstructive sleep apnea. Sleep 13:175–182

    CAS  PubMed  Google Scholar 

  21. Penzel T, Hajak G, Hoffmann RM, Lund R, Podszus T, Pollmächer T, Schäfer T, Schulz H, Sonnenschein W, Spieweg I (1993) Empfehlungen zur Durchführung und Auswertung polygraphischer Ableitungen im diagnostischen Schlaflabor. Z EEG – EMG 24:65–70

    Google Scholar 

  22. Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A (2003) Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEETrans Biomed Eng 50:1143–1151

    Article  Google Scholar 

  23. Penzel T, McNames J, de Chazal P, Raymond B, Murray A, Moody G (2002) Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med Biol Eng Comput 40:402–407

    CAS  Article  PubMed  Google Scholar 

  24. Pikovsky AS, Rosenblum MG, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge UP, UK

    Book  Google Scholar 

  25. Raschke F (1987) Coordination in the circulatory and respiratory systems. In: Rensing L, An der Heiden U, Mackey MC (Hrsg) Temporal disorder in human oscillatory systems. Springer, Berlin, Heidelberg, New York, S 152–158

    Chapter  Google Scholar 

  26. Riedl M, Müller A, Kraemer JF, Penzel T, Kurths J, Wessel N (2014) Cardio-respiratory coordination increases during sleep apnea. PLOS ONE. doi:10.1371/journal.pone.0093866

  27. Roebuck A, Monasterio V, Gederi E, Osipov M, Behar J, Malhotra A, Penzel T, Clifford GD (2014) A review of signals used in sleep analysis. Physiol Meas 35:R1–R57

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Roos M, Althaus W, Rhiel C, Penzel T, Peter JH, von Wichert P (1993) Vergleichender Einsatz von MESAM IV und Polysomnographie bei schlafbezogenen Atmungsstörungen (SBAS). Pneumologie 47:112–118

    PubMed  Google Scholar 

  29. Schäfer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized with ventilation. Nature 392:239–240

    Article  PubMed  Google Scholar 

  30. Schäfer C, Rosenblum MG, Abel HH, Kurths J (1999) Synchronization in the human cardiorespiratory system. Phys Rev E 60:857–870

    Article  Google Scholar 

  31. Snyder F, Hobson JA, Morrison DF, Goldfrank F (1964) Changes in respiration, heart rate, and systolic blood pressure in human sleep. J Appl Physiol 19:417–422

    CAS  PubMed  Google Scholar 

  32. Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 328:303–307

    CAS  Article  PubMed  Google Scholar 

  33. Task force of the European Society of Cardiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  34. Tobaldini E, Nobili L, Strada S, Casali KR, Braghiroli A, Montano N (2013) Heart rate variability in normal and pathological sleep. Front Physiol 16(4):294

    Google Scholar 

  35. Togo F, Takahashi M (2009) Heart rate variability in occupational health – a systematic review. Ind Health 47:589–602

    Article  PubMed  Google Scholar 

  36. Toledo E, Akselrod S, Pinhas I, Aravot D (2002) Does synchronization reflect a true interaction in the cardiorespiratory system? Med Eng Phys 24:45–52

    CAS  Article  PubMed  Google Scholar 

  37. Thomas RJ, Mietus JE, Peng CK, Goldberger AL (2005) An electrocardiogram -based echnique to assess cardiopulmonary coupling during sleep. Sleep 28:1151–1161

    PubMed  Google Scholar 

  38. Schramm P, Magnusdottir S, Thomas R. Cardiopulmonary Coupling – Clinical Atlas. Document Number D-4.00026, Revision 3.2, MyCardio LLC (2014)

  39. Verrier RL, Muller JE, Hobson JA (1996) Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart. Cardiovasc Res 31:181–211

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Penzel.

Ethics declarations

Interessenkonflikt

T. Penzel, C. Garcia, M. Glos, M. Renelt, C. Schöbel, J. W. Kantelhardt, R. P. Bartsch, A. Müller, M. Riedl, N. Wessel, I. Fietze geben an, dass keine Interessenskonflikte vorliegen.

In diesem Review wurde von Studien berichtet, die nach den Richtlinien guter klinischer Praxis und unter Anmeldung bei den lokalen Ethikkommissionen durchgeführt wurden.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Penzel, T., Garcia, C., Glos, M. et al. Herzfrequenz und EKG in der Polysomnographie. Somnologie 19, 254–262 (2015). https://doi.org/10.1007/s11818-015-0014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-015-0014-8

Schlüsselwörter

  • Schlafstadien
  • Autonome Funktion
  • Herzfrequenz
  • Kardiovaskuläre Regulation
  • Schlafapnoe

Keywords

  • Sleep stages
  • Autonomous function
  • Heart rate
  • Cardiovascular regulation
  • Sleep apnea