Somnologie - Schlafforschung und Schlafmedizin

, Volume 19, Issue 4, pp 254–262 | Cite as

Herzfrequenz und EKG in der Polysomnographie

  • Thomas Penzel
  • C. Garcia
  • M. Glos
  • M. Renelt
  • C. Schöbel
  • J. W. Kantelhardt
  • R. P. Bartsch
  • A. Müller
  • M. Riedl
  • N. Wessel
  • I. Fietze
Übersichten

Zusammenfassung

Die Aufzeichnung des Elektrokardiogramms (EKG) und der Herzfrequenz sind integrale Bestandteile der kardiorespiratorischen Polysomnographie. In Ergänzung zu den neurophysiologischen Parametern erlauben diese Signale eine Bewertung der autonomen Regulation während des Schlafs. Eine Auswertung des nächtlichen EKG in Bezug auf zyklische Schwankungen der Herzfrequenz kombiniert mit atmungsabhängigen Veränderungen der EKG-Morphologie (Amplitude der R-Zacke, T-Welle) erlaubt ein zuverlässiges Erkennen von schlafbezogenen Atmungsstörungen. Eine Auswertung der Schlag-zu-Schlag-Regulation der Herzfrequenz erlaubt eine Abschätzung der Schlafstadien aufgrund der grundsätzlich verschiedenen Regulation des autonomen Nervensystems im Tiefschlaf und im REM-Schlaf. Auch Übergänge vom Wachen in den Schlaf sind aus dem Verlauf der Herzfrequenz ablesbar.

In diesem Beitrag wird die technische Entwicklung der Analyse im historischen Ablauf von 1980 bis 2015 dargestellt sowie der sich aus der technischen Entwicklung ergebende physiologische und pathophysiologische Erkenntnisgewinn gezeigt.

Schlüsselwörter

Schlafstadien Autonome Funktion Herzfrequenz Kardiovaskuläre Regulation Schlafapnoe 

Heart rate and ECG in polysomnography

Abstract

The recording of ECG and heart rate are indispensable parameters of cardiorespiratory polysomnography. Complementing neurophysiological signals this allows an assessment of the autonomous nervous regulation during sleep. An evaluation of the nocturnal ECG is possible in terms of cyclical variations of heart rate and in terms of respiration modulated changes of ECG morphology (amplitude of R wave and T wave). This provides a reliable estimation of sleep disordered breathing. The autonomous nervous system is regulated in a totally different way during slow wave sleep and during REM sleep. An assessment of beat-to-beat variability of heart rate allows deriving sleep stages based on the difference in autonomous nervous system regulation. In addition the transitions from wakefulness to sleep can be tracked to some degree by an analysis of heart rate variability.

This paper presents the technical development of the analysis in a historical sequence from 1980 to 2015. Linked to this the increase in physiological and pathophysiological knowledge derived from the technical developments is presented.

Keywords

Sleep stages Autonomous function Heart rate Cardiovascular regulation Sleep apnea 

Literatur

  1. 1.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222CrossRefPubMedGoogle Scholar
  2. 2.
    Bartsch R, Kantelhardt JW, Penzel T, Havlin S (2007) Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys Rev Lett 98:054102CrossRefPubMedGoogle Scholar
  3. 3.
    Bartsch RP, Schumann AY, Kantelhardt JW, Penzel T, Ivanov PC (2012) Phase transitions in physiologic coupling. Proc Natl Acad Sci 109:10181–10186PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, Vaughn BV for the American Academy of Sleep Medicine (2014) The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology and technical specifications, Version 2.1. Aufl. American Academy of Sleep Medicine, Darien, ILGoogle Scholar
  5. 5.
    Bunde A, Havlin S, Kantelhardt JW, Penzel T, Peter JH, Voigt K (2000) Correlated and uncorrelated regions in heart-rate fluctuations during sleep. Phys Rev Lett 85:3736–3739CrossRefPubMedGoogle Scholar
  6. 6.
    Caples SM, Rosen CL, Shen WK, Gami AS, Cotts W, Adams M, Dorostkar P, Shivkumar K, Somers VK, Morgenthaler TI, Stepanski EJ, Iber C (2007) The scoring of cardiac events during sleep. J Clin Sleep Med 3:147–154PubMedGoogle Scholar
  7. 7.
    De Chazal P, Heneghan C, McNicholas WT (2009) Multimodal detection of sleep apnoea using electrocardiogram and oximetry signals. Phil Trans R Soc A 367:369–389CrossRefPubMedGoogle Scholar
  8. 8.
    Glos M, Fietze I, Blau A, Baumann G, Penzel T (2014) Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness. Physiol Behav 125:45–53CrossRefPubMedGoogle Scholar
  9. 9.
    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet Components of a new research resource for complex physiologic signals. Circulation 101:e215–e220CrossRefPubMedGoogle Scholar
  10. 10.
    Guilleminault C, Connolly S, Winkle R et al (1984) Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 8369:126–131CrossRefGoogle Scholar
  11. 11.
    Guilleminault C, Tilkian A, Dement WC (1976) The sleep apnea syndromes. Annu Rev Med 27:465–484 CrossRefPubMedGoogle Scholar
  12. 12.
    C. Huygens, Horologium Oscillatorium: sive de motu pendulorum ad horologia aptato demostrationes geometricae, 1673Google Scholar
  13. 13.
    Ivanov PC, Rosenblum MG, Peng CK, Mietus J, Havlin S, Stanley HE, Goldberger AL (1996) Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383:323–327CrossRefPubMedGoogle Scholar
  14. 14.
    Koepchen HP, Thurau K (1959) Über die Entstehungsbedingungen der atemsynchronen Schwankungen des Vagustonus (Respiratorische Arrhythmie). Pflügers Arch 269:10–30CrossRefPubMedGoogle Scholar
  15. 15.
    Moody GB, Mark RG, Zoccola A et al (1986) Clinical validation of the ECG-derived respiration (EDR) technique. Comput Cardiol 13:507–510Google Scholar
  16. 16.
    Müller A, Riedl M, Penzel T, Kurths J, Wessel N (2014) Ereignisbasierte Charakterisierung kardiovaskulärer Interaktionen während des Schlafs. Somnologie 18:243–251CrossRefGoogle Scholar
  17. 17.
    Müller A, Riedl M, Wessel N, Kurths J, Penzel T (2012) Methoden zur Analyse kardiorespiratorischer und kardiovaskulärer Kopplungen. Somnologie 16:24–31CrossRefGoogle Scholar
  18. 18.
    Parati G, Saul JP, Di Rienzo M, Mancia G (1995) Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 25:1276–1286CrossRefPubMedGoogle Scholar
  19. 19.
    Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens 18:7–19CrossRefPubMedGoogle Scholar
  20. 20.
    Penzel T, Amend G, Meinzer K, Peter JH, von Wichert P (1990) MESAM: A heart rate and snoring recorder for detection of obstructive sleep apnea. Sleep 13:175–182PubMedGoogle Scholar
  21. 21.
    Penzel T, Hajak G, Hoffmann RM, Lund R, Podszus T, Pollmächer T, Schäfer T, Schulz H, Sonnenschein W, Spieweg I (1993) Empfehlungen zur Durchführung und Auswertung polygraphischer Ableitungen im diagnostischen Schlaflabor. Z EEG – EMG 24:65–70Google Scholar
  22. 22.
    Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A (2003) Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEETrans Biomed Eng 50:1143–1151CrossRefGoogle Scholar
  23. 23.
    Penzel T, McNames J, de Chazal P, Raymond B, Murray A, Moody G (2002) Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med Biol Eng Comput 40:402–407CrossRefPubMedGoogle Scholar
  24. 24.
    Pikovsky AS, Rosenblum MG, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge UP, UKCrossRefGoogle Scholar
  25. 25.
    Raschke F (1987) Coordination in the circulatory and respiratory systems. In: Rensing L, An der Heiden U, Mackey MC (Hrsg) Temporal disorder in human oscillatory systems. Springer, Berlin, Heidelberg, New York, S 152–158CrossRefGoogle Scholar
  26. 26.
    Riedl M, Müller A, Kraemer JF, Penzel T, Kurths J, Wessel N (2014) Cardio-respiratory coordination increases during sleep apnea. PLOS ONE. doi:10.1371/journal.pone.0093866 Google Scholar
  27. 27.
    Roebuck A, Monasterio V, Gederi E, Osipov M, Behar J, Malhotra A, Penzel T, Clifford GD (2014) A review of signals used in sleep analysis. Physiol Meas 35:R1–R57PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Roos M, Althaus W, Rhiel C, Penzel T, Peter JH, von Wichert P (1993) Vergleichender Einsatz von MESAM IV und Polysomnographie bei schlafbezogenen Atmungsstörungen (SBAS). Pneumologie 47:112–118PubMedGoogle Scholar
  29. 29.
    Schäfer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized with ventilation. Nature 392:239–240CrossRefPubMedGoogle Scholar
  30. 30.
    Schäfer C, Rosenblum MG, Abel HH, Kurths J (1999) Synchronization in the human cardiorespiratory system. Phys Rev E 60:857–870CrossRefGoogle Scholar
  31. 31.
    Snyder F, Hobson JA, Morrison DF, Goldfrank F (1964) Changes in respiration, heart rate, and systolic blood pressure in human sleep. J Appl Physiol 19:417–422PubMedGoogle Scholar
  32. 32.
    Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 328:303–307CrossRefPubMedGoogle Scholar
  33. 33.
    Task force of the European Society of Cardiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065CrossRefGoogle Scholar
  34. 34.
    Tobaldini E, Nobili L, Strada S, Casali KR, Braghiroli A, Montano N (2013) Heart rate variability in normal and pathological sleep. Front Physiol 16(4):294Google Scholar
  35. 35.
    Togo F, Takahashi M (2009) Heart rate variability in occupational health – a systematic review. Ind Health 47:589–602CrossRefPubMedGoogle Scholar
  36. 36.
    Toledo E, Akselrod S, Pinhas I, Aravot D (2002) Does synchronization reflect a true interaction in the cardiorespiratory system? Med Eng Phys 24:45–52CrossRefPubMedGoogle Scholar
  37. 37.
    Thomas RJ, Mietus JE, Peng CK, Goldberger AL (2005) An electrocardiogram -based echnique to assess cardiopulmonary coupling during sleep. Sleep 28:1151–1161PubMedGoogle Scholar
  38. 38.
    Schramm P, Magnusdottir S, Thomas R. Cardiopulmonary Coupling – Clinical Atlas. Document Number D-4.00026, Revision 3.2, MyCardio LLC (2014)Google Scholar
  39. 39.
    Verrier RL, Muller JE, Hobson JA (1996) Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart. Cardiovasc Res 31:181–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas Penzel
    • 1
  • C. Garcia
    • 1
  • M. Glos
    • 1
  • M. Renelt
    • 1
  • C. Schöbel
    • 1
  • J. W. Kantelhardt
    • 2
  • R. P. Bartsch
    • 3
  • A. Müller
    • 4
  • M. Riedl
    • 4
  • N. Wessel
    • 4
  • I. Fietze
    • 1
  1. 1.Interdisziplinäres Schlafmedizinisches Zentrum, Charitécentrum für Kardiologie CC11Charité – Universitätsmedizin BerlinBerlinDeutschland
  2. 2.Institut für PhysikMartin-Luther-Universität Halle-WittenbergHalleDeutschland
  3. 3.Physics DepartmentBar-Ilan-UniversityRamat GanIsrael
  4. 4.Kardiovaskuläre Physik, Arbeitsgruppe Nichtlineare Dynamik, Fachbereich PhysikHumboldt-Universität BerlinBerlinDeutschland

Personalised recommendations