Skip to main content
Log in

Genetische Diagnostik von Schlafstörungen

Genetic diagnostics of sleep disorders

  • Schwerpunkt
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die genetischen Grundlagen von Schlafstörungen sind vielfältig. Bei den allermeisten Formen der Schlafstörungen als multifaktoriell bedingte Erkrankung ist nicht zu erwarten, dass Einzelgendefekte im Sinne mendelischer Vererbung für die Erkrankung als Kandidatengene verantwortlich sind. Die Entdeckung einzelner monogenetisch bedingter Assoziationen zu Schlafstörungen wird somit auch in Zukunft eine Seltenheit sein. Vor diesem Hintergrund ist die molekulargenetische Diagnostik zurzeit in der Schlafmedizin ein bislang wenig genutztes diagnostisches Instrument.

Ziel der Arbeit

Dieser Beitrag möchte einen Überblick vermitteln über die molekulargenetischen Befunden einerseits, die bereits eine relevante Wertigkeit in der Diagnosestellung von einzelnen Schlafstörungen haben, und die molekulargenetischen Befunde andererseits, die im Kontext mit den klinischen und elektrophysiologischen (polysomnographischen) Befunden dazu beitragen können, eine vermutete Diagnose zu bestärken.

Ergebnisse und Diskussion

Die bis heute bekannten HLA-Assoziationen bei der Narkolepsie und eingeschränkt beim Schlafwandeln und dem Kleine-Levin-Syndrom geben die Möglichkeit, durch die molekulargenetische Diagnostik eine zusätzliche Evidenz auf dem Boden der objektivierbaren Diagnosefindung zu haben.

Für die Gruppe des Restless-legs-Syndroms und der periodischen Beinbewegungen sowie für die in der Schlafmedizin häufigste diagnostizierte Form der schlafbezogenen Atmungsstörung, dem obstruktiven Schlaf-Apnoe-Syndrom, spielen molekulargenetische diagnostische Methoden bislang keine Rolle. Es gibt jedoch viele Befunde aus großen Kohorten bezüglich der Assoziation zu verschiedenen Genen, deren biologische Wertigkeit bislang nicht gut verstanden wird.

Für den klinisch tätigen Schlafmediziner dient somit das Wissen um die genetischen Ursachen von Schlafstörungen in erster Linie dem besseren Verständnis der Biologie. Hierzu gehören insbesondere die Insomnien und Hypersomnien, mit Ausnahme der Narkolepsie.

Eine für das bessere molekularbiologische Verständnis dieser Erkrankungen relevante Gruppe von Genen ist die Gruppe der Clock-Gene, für die erste Befunde zur unterschiedlichen Expression bei der idiopathischen Hypersomnie vorliegen.

Abstract

Background

The genetic foundations of sleep disorders are manifold. Most forms of sleep disorder are multifactorial diseases and single gene defects are not expected to be responsible as candidate genes in the sense of Mendelian inheritance of the disease. The discovery of isolated monogenetic associations to sleep disorders will also be a rarity even in the future. Against this background, molecular genetic diagnostics are currently a little used diagnostic instrument in sleep medicine.

Objectives

This article presents an overview of the molecular genetic results, which already have a relevant importance in the diagnostics of isolated sleep disorders and molecular genetic results which can contribute to strengthening a suspected diagnosis in the context of the clinical and electrophysiological (polysomnography) results.

Results and discussion

The well-known association of HLA loci with narcolepsy and the less significant association of HLA loci to other sleep disorders, such as sleepwalking and the Kleine–Levin syndrome may help to strengthen the diagnostic evidence to differentiate them from other possible diagnoses. For the group consisting of restless legs syndrome, periodic limb movements and the most commonly diagnosed form of sleep-related disorders, obstructive sleep apnea syndrome, molecular genetic findings do not have any diagnostic impact: however, there are many findings from large cohorts relating to associations with various genes but the biological significance is not yet fully understood. For clinicians working in the field of sleep medicine the molecular genetic findings concerning these sleep disorders are mainly important to obtain a better understanding of the biology, such as in insomnia and hypersomnia with the exception of narcolepsy. The group of clock genes may be of interest to better understand the biological basis of these sleep disorders as data on differential expression in idiopathic hypersomnia are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Amiel J, Laudier B et al (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33(4):459–461

    Article  CAS  PubMed  Google Scholar 

  2. Andretic R, Franken P et al (2008) Genetics of sleep. Annu Rev Genet 42:361–388

    Article  CAS  PubMed  Google Scholar 

  3. BaHammam AS, GadElRab MO et al (2008) Clinical characteristics and HLA typing of a family with Kleine-Levin syndrome. Sleep Med 9(5):575–578

    Article  PubMed  Google Scholar 

  4. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    Article  CAS  PubMed  Google Scholar 

  5. Brown SA, Kunz D et al (2008) Molecular insights into human daily behavior. Proc Natl Acad Sci U S A 105(5):1602–1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chabas D, Taheri S et al (2003) The genetics of narcolepsy. Annu Rev Genomics Hum Genet 4:459–483

    Article  CAS  PubMed  Google Scholar 

  7. Cortelli P, Gambetti P et al (1999) Fatal familial insomnia: clinical features and molecular genetics. J Sleep Res 8(Suppl 1):23–29

    Article  PubMed  Google Scholar 

  8. Gottlieb DJ, DeStefano AL et al (2004) APOE epsilon4 is associated with obstructive sleep apnea/hypopnea: the Sleep Heart Health Study. Neurology 63(4):664–668

    Article  CAS  PubMed  Google Scholar 

  9. Hallmayer J, Faraco J et al (2009) Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 41(6):708–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Healy F, Marcus CL (2011) Congenital central hypoventilation syndrome in children. Paediatr Respir Rev 12(4):253–263

    Article  CAS  PubMed  Google Scholar 

  11. Hong SC, Lin L et al (2007) DQB1*0301 and DQB1*0601 modulate narcolepsy susceptibility in Koreans. Hum Immunol 68(1):59–68

    Article  CAS  PubMed  Google Scholar 

  12. Hor H, Bartesaghi L et al (2011) A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am J Hum Genet 89(3):474–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hor H, Kutalik Z et al (2010) Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 42(9):786–789

    Article  CAS  PubMed  Google Scholar 

  14. Jones CR, Campbell SS et al (1999) Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med 5(9):1062–1065

    Article  CAS  PubMed  Google Scholar 

  15. Kadotani H, Kadotani T et al (2001) Association between apolipoprotein E epsilon4 and sleep-disordered breathing in adults. JAMA 285(22):2888–2890

    Article  CAS  PubMed  Google Scholar 

  16. Khalyfa A, Serpero LD et al (2011) TNF-alpha gene polymorphisms and excessive daytime sleepiness in pediatric obstructive sleep apnea. J Pediatr 158(1):77–82

    Article  CAS  PubMed  Google Scholar 

  17. Kleitman N (1957) Sleep, wakefulness, and consciousness. Psychol Bull 54(4):354–359 (discussion 360)

    Article  CAS  PubMed  Google Scholar 

  18. Kornum BR, Kawashima M et al (2011) Common variants in P2RY11 are associated with narcolepsy. Nat Genet 43(1):66–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lecendreux M, Bassetti C et al (2003) HLA and genetic susceptibility to sleepwalking. Mol Psychiatry 8(1):114–117

    Article  CAS  PubMed  Google Scholar 

  20. Lin H, Lin D et al (2013) Association of ACE I/D polymorphism with obstructive sleep apnea susceptibility: evidence based on 2,228 subjects. Sleep Breath

  21. Lin L, Faraco J et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376

    Article  CAS  PubMed  Google Scholar 

  22. Lippert J, Halfter H et al (2014) Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia. PLoS One 9(1):e85255

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lobbezoo F, Visscher CM et al (2014) Bruxism and genetics: a review of the literature. J Oral Rehabil 41(9):709–714

    Article  CAS  PubMed  Google Scholar 

  24. Lugaresi E, Medori R et al (1986) Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N Engl J Med 315(16):997–1003

    Article  CAS  PubMed  Google Scholar 

  25. Lugaresi E, Montagna P et al (1986) Familial insomnia with a malignant course: a new thalamic disease. Rev Neurol (Paris) 142(10):791–792

    Google Scholar 

  26. Mignot E (1997) Genetics of narcolepsy and other sleep disorders. Am J Hum Genet 60(6):1289–1302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mignot E, Lin L et al (2001) Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet 68(3):686–699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Onofrj M, Luciano AL et al (2003) HLA typing does not predict REM sleep behaviour disorder and hallucinations in Parkinson’s disease. Mov Disord 18(3):337–340

    Article  PubMed  Google Scholar 

  29. Patel SR, Larkin EK et al (2007) The association of angiotensin converting enzyme (ACE) polymorphisms with sleep apnea and hypertension. Sleep 30(4):531–533

    PubMed  Google Scholar 

  30. Pelin Z, Guilleminault C et al (1998) HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens 51(1):96–100

    Article  CAS  PubMed  Google Scholar 

  31. Redline S, Kapur VK et al (2000) Effects of varying approaches for identifying respiratory disturbances on sleep apnea assessment. Am J Respir Crit Care Med 161(2 Pt 1):369–374

    Article  CAS  PubMed  Google Scholar 

  32. Redline S, Tosteson T et al (1992) Studies in the genetics of obstructive sleep apnea. Familial aggregation of symptoms associated with sleep-related breathing disturbances. Am Rev Respir Dis 145(2 Pt 1):440–444

    Article  CAS  PubMed  Google Scholar 

  33. Reid KJ, Chang AM et al (2001) Familial advanced sleep phase syndrome. Arch Neurol 58(7):1089–1094

    Article  CAS  PubMed  Google Scholar 

  34. Reimao R, Shimizu MH (1998) Kleine-Levin syndrome. Clinical course, polysomnography and multiple sleep latency test. Case report. Arq Neuropsiquiatr 56(3B):650–654

    Article  CAS  PubMed  Google Scholar 

  35. Riha RL, Brander P et al (2005) Tumour necrosis factor-alpha (-308) gene polymorphism in obstructive sleep apnoea-hypopnoea syndrome. Eur Respir J 26(4):673–678

    Article  CAS  PubMed  Google Scholar 

  36. Schafer C, Schafer T et al (1999) Sleep-phase-related home therapy in congenital central hypoventilation syndrome (CCHS). Med Klin (Munich) 94(1 Spec No):15–17

    Google Scholar 

  37. Schafer C, Schafer T et al (1996) Continuous ambulatory monitoring in quality control of home therapy of congenital central hypoventilation syndrome (CCHS). Wien Med Wochenschr 146(13–14):323–324

  38. Schenck CH, Garcia-Rill E et al (1996) HLA class II genes associated with REM sleep behavior disorder. Ann Neurol 39(2):261–263

    Article  CAS  PubMed  Google Scholar 

  39. Schormair B, Kemlink D et al (2008) PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nat Genet 40(8):946–948

    Article  CAS  PubMed  Google Scholar 

  40. Schormair B, Plag J et al (2011) MEIS1 and BTBD9: genetic association with restless leg syndrome in end stage renal disease. J Med Genet 48(7):462–466

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sehgal A, Mignot E (2011) Genetics of sleep and sleep disorders. Cell 146(2):194–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shanware NP, Hutchinson JA et al (2011) Casein kinase 1-dependent phosphorylation of familial advanced sleep phase syndrome-associated residues controls PERIOD 2 stability. J Biol Chem 286(14):12766–12774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Stefansson H, Rye DB et al (2007) A genetic risk factor for periodic limb movements in sleep. N Engl J Med 357(7):639–647

    Article  CAS  PubMed  Google Scholar 

  44. Taheri S (2004) The genetics of sleep disorders. Minerva Med 95(3):203–212

    CAS  PubMed  Google Scholar 

  45. Toh KL, Jones CR et al (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291(5506):1040–1043

    Article  CAS  PubMed  Google Scholar 

  46. Weese-Mayer DE, Berry-Kravis EM et al (2010) An official ATS clinical policy statement: congenital central hypoventilation syndrome: genetic basis, diagnosis, and management. Am J Respir Crit Care Med 181(6):626–644

    Article  CAS  PubMed  Google Scholar 

  47. Weese-Mayer DE, Berry-Kravis EM et al (2003) Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet A 123A(3):267–278

    Article  PubMed  Google Scholar 

  48. Winkelmann J, Czamara D et al (2011) Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet 7(7):e1002171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Winkelmann J, Polo O et al (2007) Genetics of restless legs syndrome (RLS): state-of-the-art and future directions. Mov Disord 22(Suppl 18):S449–S458

    Article  PubMed  Google Scholar 

  50. Xu H, Guan J et al (2014) A systematic review and meta-analysis of the association between serotonergic gene polymorphisms and obstructive sleep apnea syndrome. PLoS One 9(1):e86460

    Article  PubMed Central  PubMed  Google Scholar 

  51. Xu Y, Padiath QS et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434(7033):640–644

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. P. Young gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, P. Genetische Diagnostik von Schlafstörungen. Somnologie 18, 218–224 (2014). https://doi.org/10.1007/s11818-014-0687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-014-0687-4

Schlüsselwörter

Keywords

Navigation