Skip to main content
Log in

Die Rolle gastrointestinaler Peptidhormone für REM-Schlaf-Verhaltensstörung und Morbus Parkinson

The role of gastrointestinal peptide hormones for REM sleep behavior disorder and Parkinson’s disease

  • Schwerpunkt
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ghrelin und andere Peptidhormone des Gastrointestinaltrakts beeinflussen Stoffwechselprozesse und die Motilität des Verdauungstraktes. Viele dieser Peptidhormone wirken zusätzlich über eine Bindung an spezifische Rezeptoren im zentralen Nervensystem (ZNS) auf Prozesse wie Gedächtnisfunktion, Stimmung, Belohnungsverhalten und Schlaf. Die Ausschüttung der Peptidhormone des Gastrointestinaltrakts wird über unterschiedliche Mechanismen gesteuert. Der N. vagus spielt hierbei eine wichtige Rolle.

Fragestellung

Ziel dieses Artikels ist es, den Zusammenhang zwischen gastrointestinalen Peptidhormonen (insbesondere dem im Magen gebildeten Peptidhormon Ghrelin) und den Erkrankungen REM-Schlaf-Verhaltensstörung und M. Parkinson darzustellen.

Ergebnisse

Klinische und neuropathologische Untersuchungen legen eine vagale Dysfunktion bei den beiden Erkrankungen M. Parkinson und REM-Schlaf-Verhaltensstörung (einem möglichen frühen Stadium der Parkinson Erkrankung) nahe. Peptidhormone des Gastrointestinaltrakts spielen auch aufgrund der Modulation von Prozessen im ZNS eine Rolle für neurologische Erkrankungen wie REM-Schlaf-Verhaltensstörung und M. Parkinson. In eigenen Arbeiten konnten wir zeigen, dass sich das postprandiale Ausschüttungsmuster von Ghrelin und pankreatischem Polypeptid von Patienten mit REM-Schlaf-Verhaltensstörung und M. Parkinson ähnelt und beide Patientengruppen sich von gesunden Kontrollpersonen unterscheiden. Diese Befunde unterstützen die Annahme, dass der REM-Schlaf-Verhaltensstörung und dem M. Parkinson eine gemeinsame Pathologie im neuroendokrinen System zugrunde liegt.

Schlussfolgerungen

Experimentelle Daten zeigen, dass einige der im Gastrointestinaltrakt gebildeten Peptidhormone eine neuroprotektive Wirkung haben. Da beispielsweise Ghrelin-Agonisten in anderen Indikationen bereits klinisch getestet werden, könnten Peptidhormone mittelfristig auch Bedeutung für neuroprotektive Therapiestrategien bei den beiden oben angegebenen Erkrankungen erlangen.

Abstract

Background

Ghrelin and other peptide hormones of the gastrointestinal tract influence metabolism and motility. Many of these peptides also modulate cognitive function, mood, reward-associated behavior, and sleep by binding to specific receptors in the central nervous system (CNS). The secretion of peptide hormones of the gastrointestinal tract is regulated by various mechanisms including the vagal nerve.

Objectives

The objective of this article is to summarize data about the association between gastrointestinal peptides (with focus on the gastric peptide ghrelin) and the two neurological disorders Parkinson’s disease and REM sleep behavior disorder.

Results

Clinical and neuropathological studies indicate vagal dysfunction in Parkinson’s disease and REM sleep behavior disorder (a putative premotor state of Parkinson’s disease). Due to the fact that peptide hormones of the gastrointestinal tract act on various CNS functions, these peptides might be of importance for the two neurological disorders Parkinson’s disease and REM sleep behavior disorder. In diagnostic studies investigating the postprandial secretion of ghrelin and pancreatic polypeptide, we observed a similar postprandial secretion pattern of these peptides in patients with REM sleep behavior disorder and in patients with Parkinson’s disease. The pattern seen in both patient groups was distinct from the pattern seen in healthy controls. Hence, studies investigating the neuroendocrine system support the assumption that Parkinson’s disease and REM sleep behavior disorder have a common underlying pathology.

Conclusions

Experimental data indicate that some peptide hormones of the gastrointestinal tract have neuroprotective potential. Considering the fact that ghrelin receptor agonists, for example, are available and have already been tested in clinical studies for other indications, these peptides might be of interest for neuroprotective or disease-modifying strategies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660

    Article  PubMed  CAS  Google Scholar 

  2. Asakawa A, Inui A, Kaga T et al (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120(2):337–345

    Article  PubMed  CAS  Google Scholar 

  3. Muller TD, Tschop MH (2013) Ghrelin – a key pleiotropic hormone-regulating systemic energy metabolism. Endocr Dev 25:91–100

    Article  PubMed  Google Scholar 

  4. Obal F Jr, Alt J, Taishi P et al (2003) Sleep in mice with nonfunctional growth hormone-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol 284(1):R131–R139

    PubMed  CAS  Google Scholar 

  5. Tolle V, Bassant MH, Zizzari P et al (2002) Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinology 143(4):1353–1361

    Article  PubMed  CAS  Google Scholar 

  6. Weikel JC, Wichniak A, Ising M et al (2003) Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab 284(2):E407–E415

    PubMed  CAS  Google Scholar 

  7. Kluge M, Gazea M, Schussler P et al (2010) Ghrelin increases slow wave sleep and stage 2 sleep and decreases stage 1 sleep and REM sleep in elderly men but does not affect sleep in elderly women. Psychoneuroendocrinology 35(2):297–304

    Article  PubMed  CAS  Google Scholar 

  8. Kluge M, Schussler P, Zuber V et al (2007) Ghrelin enhances the nocturnal secretion of cortisol and growth hormone in young females without influencing sleep. Psychoneuroendocrinology 32(8–10):1079–1085

  9. Motivala SJ, Tomiyama AJ, Ziegler M et al (2009) Nocturnal levels of ghrelin and leptin and sleep in chronic insomnia. Psychoneuroendocrinology 34(4):540–545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141(11):846–850

    Article  PubMed  Google Scholar 

  11. Schmid SM, Hallschmid M, Jauch-Chara K et al (2008) A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 17(3):331–334

    Article  PubMed  Google Scholar 

  12. Taheri S, Lin L, Austin D et al (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1(3):e62

    Article  PubMed  PubMed Central  Google Scholar 

  13. Crispim CA, Waterhouse J, Damaso AR et al (2011) Hormonal appetite control is altered by shift work: a preliminary study. Metabolism 60(12):1726–1735

    Article  PubMed  CAS  Google Scholar 

  14. Szentirmai E, Kapas L, Sun Y et al (2010) Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 298(2):R467–R477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zigman JM, Jones JE, Lee CE et al (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494(3):528–548

    Article  PubMed  CAS  Google Scholar 

  16. Ferrini F, Salio C, Lossi L, Merighi A (2009) Ghrelin in central neurons. Curr Neuropharmacol 7(1):37–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Schenck CH, Boeve BF, Mahowald MW (2013) Delayed emergence of a parkinsonian disorder or dementia in 81 % of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med 14(8):744–748

    Article  PubMed  Google Scholar 

  18. Postuma RB, Gagnon JF, Montplaisir J (2013) Rapid eye movement sleep behavior disorder as a biomarker for neurodegeneration: the past 10 years. Sleep Med 14(8):763–767

    Article  PubMed  Google Scholar 

  19. Frauscher B, Jennum P, Ju YE et al (2014) Comorbidity and medication in REM sleep behavior disorder: a multicenter case-control study. Neurology 82(12):1076–1079

    Article  PubMed  Google Scholar 

  20. Massicotte-Marquez J, Decary A, Gagnon JF et al (2008) Executive dysfunction and memory impairment in idiopathic REM sleep behavior disorder. Neurology 70(15):1250–1257

    Article  PubMed  CAS  Google Scholar 

  21. Isacson R, Nielsen E, Dannaeus K et al (2011) The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol 650(1):249–255

    Article  PubMed  CAS  Google Scholar 

  22. Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  23. Williams DL, Grill HJ, Cummings DE, Kaplan JM (2003) Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 144(12):5184–5187

    Article  PubMed  CAS  Google Scholar 

  24. Debas HT, Taylor IL, Seal AM, Passaro EP Jr (1982) Evidence for vagus-dependent pancreatic polypeptide-releasing factor in the antrum: studies with the autotransplanted dog pancreas. Surgery 92(2):309–314

    PubMed  CAS  Google Scholar 

  25. Whitcomb DC, Taylor IL, Vigna SR (1990) Characterization of saturable binding sites for circulating pancreatic polypeptide in rat brain. Am J Physiol 259(4 Pt 1):G687–G691

    PubMed  CAS  Google Scholar 

  26. Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140(4):1687–1694

    PubMed  CAS  Google Scholar 

  27. Guan XM, Yu H, Palyha OC et al (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48(1):23–29

    Article  PubMed  CAS  Google Scholar 

  28. Unger MM, Moller JC, Mankel K et al (2011) Postprandial ghrelin response is reduced in patients with Parkinson’s disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson’s disease? J Neurol 258(6):982–990

    Article  PubMed  CAS  Google Scholar 

  29. Bellomo G, Santambrogio L, Fiacconi M et al (1991) Plasma profiles of adrenocorticotropic hormone, cortisol, growth hormone and prolactin in patients with untreated Parkinson’s disease. J Neurol 238(1):19–22

    Article  PubMed  CAS  Google Scholar 

  30. Unger MM, Ekman R, Bjorklund AK et al (2013) Unimpaired postprandial pancreatic polypeptide secretion in Parkinson’s disease and REM sleep behavior disorder. Mov Disord 28(4):529–533

    Article  PubMed  CAS  Google Scholar 

  31. Moon M, Kim HG, Hwang L et al (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 15(4):332–347

    Article  PubMed  CAS  Google Scholar 

  32. Jiang H, Li LJ, Wang J, Xie JX (2008) Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 212(2):532–537

    Article  PubMed  CAS  Google Scholar 

  33. Andrews ZB, Erion D, Beiler R et al (2009) Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 29(45):14057–14065

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ejskjaer N, Wo JM, Esfandyari T et al (2013) A phase 2a, randomized, double-blind 28-day study of TZP-102 a ghrelin receptor agonist for diabetic gastroparesis. Neurogastroenterol Motil 25(2):e140–e150

    Article  PubMed  CAS  Google Scholar 

  35. Holscher C (2012) Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs 26(10):871–882

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

M.M. Unger, V. Ries, D. Thomi, D. Vadasz, M. Krenzer, M. Zoche und W.H. Oertel geben an, dass keine Interessenkonflikte bestehen.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Hinweis zur Wiederverwendung eigener früherer Arbeiten: Dieser Beitrag basiert neben den im Literaturverzeichnis aufgeführten Arbeiten inhaltlich auch auf folgenden Buchkapiteln der Autoren:

Unger MM, Oertel WH (2013) Ghrelin: a gastric peptide linking sleep and energy balance. Handbook of nutrition, diet and sleep. Preedy (Hrsg.) Wageningen Academic Publishers, ISBN: 978-9086862085.

Unger MM, Oertel WH (2014) Ghrelin and Parkinson’s Disease. Central Functions of the Ghrelin Receptor. Portelli, Smolders (Hrsg.), Springer, ISBN: 978-1493908226.

Acknowledgment

Prof. Dr. med. Dr. h.c. Wolfgang H. Oertel ist Hertie-Senior-Forschungsprofessor der gemeinnützigen Hertie-Stiftung Frankfurt/Main, Deutschland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M. Unger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, M., Ries, V., Thomi, D. et al. Die Rolle gastrointestinaler Peptidhormone für REM-Schlaf-Verhaltensstörung und Morbus Parkinson. Somnologie 18, 166–171 (2014). https://doi.org/10.1007/s11818-014-0675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-014-0675-8

Schlüsselwörter

Keywords

Navigation