Skip to main content

Continuous blood pressure measurement using pulse transit time

Kontinuierliche Blutdruckmessung anhand der Pulstransitzeit

Abstract

Measurement of blood pressure (BP) during sleep is gaining in importance for clinical and scientific reasons. Diagnosis and follow-up of arterial hypertension requires BP measurement during sleep. Further, continuous BP measurements are necessary to elucidate the pathogenesis of sleep disturbances (e.g., sleep apnea), which are related to arterial hypertension. This review gives a short overview about cuff-based methods and methods for continuous and non-invasive BP measurement with a focus on sleep. The emphasis of this review is on the indirect measurement of BP using the pulse transit time (PTT). This method is based on the functional relation between arterial wall stiffness, pulse wave velocity, and BP. It can be used for absolute BP measurement when combined with calibration. Recent validation and application studies of the BP measurement using the PTT suggest that this method can in principle be used for BP monitoring during sleep. It opens the possibility to study the control of BP during sleep.

Zusammenfassung

Blutdruckmessungen im Schlaf gewinnen sowohl für klinische als auch wissenschaftliche Anwendungen eine immer größere Bedeutung. Diagnose und Verlaufsbeobachtungen der arteriellen Hypertonie schließen Untersuchungen des Blutdrucks im Schlaf ein. Insbesondere kontinuierliche Messungen sind für die weitere Aufklärung der Pathogenese von Schlafstörungen, die mit Hypertonie vergesellschaftet sind, von besonderem Wert. Das betrifft unter anderem das Schlafapnoe-Sndrom. Dieser Artikel gibt einen kurzen Überblick über die manschettenbasierten Methoden und eine neue Methode der kontinuierlichen nichtinvasiven Blutdruckmessung. Der Schwerpunkt liegt auf der indirekten Blutdruckmessung mittels Pulstransitzeit. Die Methode basiert auf der funktionellen Beziehung zwischen der Steifheit arterieller Gefäße, der Pulswellengeschwindigkeit und dem Blutdruck. Unter Anwendung einer Ein-Punkt-Kalibrierung sind Messungen absoluter Blutdruckwerte möglich. Die bisher vorliegenden Validierungsstudien zeigen, dass dieses Verfahren für die kontinuierliche Blutdruckmessung in Schlaf prinzipiell geeignet ist und zur weiteren Aufklärung schlafbezogener Blutdruckregulation beitragen kann.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abibullaev B, Seo HD (2011) A new QRS detection method using wavelets and artificial neural networks. J Med Syst 35:683–691

    PubMed  Article  Google Scholar 

  2. Ahlstrom C, Johansson A, Uhlin F et al (2005) Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. J Artif Organs 8:192–197

    PubMed  Article  Google Scholar 

  3. Allen J, Murray A (1993) Development of a neural network screening aid for diagnosing lower limb peripheral vascular disease from photoelectric plethysmography pulse waveforms. Physiol Meas 14:13–22

    PubMed  Article  CAS  Google Scholar 

  4. Allen J, Murray A (2000) Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol Meas 21:369–377

    PubMed  Article  CAS  Google Scholar 

  5. Argod J, Pepin JL, Levy P (1998) Differentiating obstructive and central sleep respiratory events through pulse transit time. Am J Respir Crit Care Med 158:1778–1783

    PubMed  Article  CAS  Google Scholar 

  6. Awad AA, Ghobashy MA, Ouda W et al (2001) Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg 92:1483–1486

    PubMed  Article  CAS  Google Scholar 

  7. Bartsch S, Ostojic D, Schmalgemeier H et al (2010) Validation of continuous blood pressure measurements by pulse transit time: a comparison with invasive measurements in a cardiac intensive care unit. Dtsch Med Wochenschr 135:2406–2412

    PubMed  Article  CAS  Google Scholar 

  8. Belal SY, Taktak AF, Nevill AJ et al (2002) Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system. Artif Intell Med 24:149–165

    PubMed  Article  Google Scholar 

  9. Callaghan FJ, Babbs CF, Bourland JD, Geddes LA (1984) The relationship between arterial pulse-wave velocity and pulse frequency at different pressures. J Med Eng Technol 8:15–18

    PubMed  Article  CAS  Google Scholar 

  10. Campbell NR, Chockalingam A, Fodor JG, McKay DW (1990) Accurate, reproducible measurement of blood pressure. CMAJ 143:19–24

    PubMed  CAS  Google Scholar 

  11. Chan GS, Middleton PM, Celler BG et al (2007) Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement. Physiol Meas 28:439–452

    PubMed  Article  Google Scholar 

  12. Chan GS, Middleton PM, Celler BG et al (2007) Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J Clin Monit Comput 21:283–293

    PubMed  Article  Google Scholar 

  13. Chen YT, Chiayg CY, Wang MC et al (2006) Serial changes of pulse wave velocity and correlations with hemodynamic parameters during general anesthesia. Acta Anaesthesiol Taiwan 44:193–198

    PubMed  Google Scholar 

  14. Davies JI, Struthers AD (2003) Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens 21:463–472

    PubMed  Article  CAS  Google Scholar 

  15. Duprez DA (2012) Arterial stiffness/elasticity in the contribution to progression of heart failure. Heart Fail Clin 8:135–141

    PubMed  Article  Google Scholar 

  16. Foo JY, Lim CS (2006) Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol Health Care 14:97–108

    PubMed  Google Scholar 

  17. Foo JY, Lim CS, Wang P (2006) Evaluation of blood pressure changes using vascular transit time. Physiol Meas 27:685–694

    PubMed  Article  Google Scholar 

  18. Fortin J, Marte W, Grullenberger R et al (2006) Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput Biol Med 36:941–957

    PubMed  Article  CAS  Google Scholar 

  19. Fraden J, Neuman MR (1980) QRS wave detection. Med Biol Eng Comput 18:125–132

    PubMed  Article  CAS  Google Scholar 

  20. Garvey JF, Taylor CT, McNicholas WT (2009) Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J 33:1195–1205

    PubMed  Article  CAS  Google Scholar 

  21. Geddes LA, Voelz MH, Babbs CF et al (1981) Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 18:71–74

    PubMed  Article  CAS  Google Scholar 

  22. Gesche H, Grosskurth D, Kuchler G, Patzak A (2012) Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur J Appl Physiol 112:309–315

    PubMed  Article  Google Scholar 

  23. Hennig A, Gesche H, Fietze I et al (2012) Messung von apnoebezogenen Blutdruckänderungen mittels Pulstransitzeit und Penaz-Prinzip. Atemwegs- und Lungenkrankheiten 38:1–8

  24. Jaffe LM, Kjekshus J, Gottlieb SS (2012) Importance and management of chronic sleep apnoea in cardiology. Eur Heart J 34:809–815

    PubMed  Article  Google Scholar 

  25. Jago JR, Murray A (1988) Repeatability of peripheral pulse measurements on ears, fingers and toes using photoelectric plethysmography. Clin Phys Physiol Meas 9:319–330

    PubMed  Article  CAS  Google Scholar 

  26. Katz ES, Lutz J, Black C, Marcus CL (2003) Pulse transit time as a measure of arousal and respiratory effort in children with sleep-disordered breathing. Pediatr Res 53:580–588

    PubMed  Article  Google Scholar 

  27. Keselbrener L, Keselbrener M, Akselrod S (1997) Nonlinear high pass filter for R-wave detection in ECG signal. Med Eng Phys 19:481–484

    PubMed  Article  CAS  Google Scholar 

  28. Kounalakis SN, Geladas ND (2009) The role of pulse transit time as an index of arterial stiffness during exercise. Cardiovasc Eng 9:92–97

    PubMed  Article  CAS  Google Scholar 

  29. Kurki T, Smith NT, Head N et al (1987) Noninvasive continuous blood pressure measurement from the finger: optimal measurement conditions and factors affecting reliability. J Clin Monit 3:6–13

    PubMed  Article  CAS  Google Scholar 

  30. Lane JD, Greenstadt L, Shapiro D, Rubinstein E (1983) Pulse transit time and blood pressure: an intensive analysis. Psychophysiology 20:45–49

    PubMed  Article  CAS  Google Scholar 

  31. Lass J, Meigas K, Karai D et al (2004) Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. Conf Proc IEEE Eng Med Biol Soc 3:2239–2242

    PubMed  CAS  Google Scholar 

  32. Lesske J, Fletcher EC, Bao G, Unger T (1997) Hypertension caused by chronic intermittent hypoxia—influence of chemoreceptors and sympathetic nervous system. J Hypertens 15:1593–1603

    PubMed  Article  CAS  Google Scholar 

  33. Lutter N, Engl HG, Fischer F, Bauer RD (1996) Noninvasive continuous blood pressure control by pulse wave velocity. Z Kardiol 85(Suppl 3):124–126

    PubMed  Google Scholar 

  34. Ma T, Zhang YT (2005) A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. Conf Proc IEEE Eng Med Biol Soc 1:996–999

    PubMed  CAS  Google Scholar 

  35. Maglaveras N, Stamkopoulos T, Diamantaras K et al (1998) ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int J Med Inform 52:191–208

    PubMed  Article  CAS  Google Scholar 

  36. Mancia G, Laurent S, Agabiti-Rosei E et al (2009) Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 27:2121–2158

    PubMed  Article  CAS  Google Scholar 

  37. Mitchell GF, Parise H, Benjamin EJ et al (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 43:1239–1245

    PubMed  Article  CAS  Google Scholar 

  38. Molhoek GP, Wesseling KH, Settels JJ et al (1984) Evaluation of the Penaz servo-plethysmo-manometer for the continuous, non-invasive measurement of finger blood pressure. Basic Res Cardiol 79:598–609

    PubMed  Article  CAS  Google Scholar 

  39. Monahan K, Redline S (2011) Role of obstructive sleep apnea in cardiovascular disease. Curr Opin Cardiol 26:541–547

    PubMed  Article  Google Scholar 

  40. Muehlsteff J, Aubert XL, Schuett M (2006) Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period. Conf Proc IEEE Eng Med Biol Soc 1:5088–5092

    PubMed  CAS  Google Scholar 

  41. Nakagawara M, Yamakoshi K (2000) A portable instrument for non-invasive monitoring of beat-by-beat cardiovascular haemodynamic parameters based on the volume-compensation and electrical-admittance method. Med Biol Eng Comput 38:17–25

    PubMed  Article  CAS  Google Scholar 

  42. Nygaard HA (2008) Measuring body mass index (BMI) in nursing home residents: the usefulness of measurement of arm span. Scand J Prim Health Care 26:46–49

    PubMed  Article  Google Scholar 

  43. Palatini P, Casiglia E, Gasowski J et al (2011) Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag 7:725–739

    PubMed  Article  Google Scholar 

  44. Payne RA, Symeonides CN, Webb DJ, Maxwell SR (2006) Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J Appl Physiol 100:136–141

    PubMed  Article  CAS  Google Scholar 

  45. Penaz J, Voigt A, Teichmann W (1976) Beitrag zur fortlaufenden indirekten Blutdruckmessung. Z Innere Med 31:1030–1033

    CAS  Google Scholar 

  46. Phillips CL, Butlin M, Wong KK, Avolio AP (2013) Is obstructive sleep apnoea causally related to arterial stiffness? A critical review of the experimental evidence. Sleep Med Rev 17:7–18

    PubMed  Article  Google Scholar 

  47. Pitson DJ, Stradling JR (1998) Value of beat-to-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/hypopnoea syndrome. Eur Respir J 12:685–692

    PubMed  Article  CAS  Google Scholar 

  48. Pollak MH, Obrist PA (1983) Aortic-radial pulse transit time and ECG Q-wave to radial pulse wave interval as indices of beat-by-beat blood pressure change. Psychophysiology 20:21–28

    PubMed  Article  CAS  Google Scholar 

  49. Proenca J, Muehlsteff J, Aubert X, Carvalho P (2010) Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population? Conf Proc IEEE Eng Med Biol Soc 2010:598–601

    PubMed  Google Scholar 

  50. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667

    PubMed  Article  CAS  Google Scholar 

  51. Sawada Y, Yamakoshi K (1985) A correlation analysis between pulse transit time and instantaneous blood pressure measured indirectly by the vascular unloading method. Biol Psychol 21:1–9

    PubMed  Article  CAS  Google Scholar 

  52. Schiffrin EL (2004) Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am J Hypertens 17:39S–48S

    PubMed  Article  CAS  Google Scholar 

  53. Schmalgemeier H, Bitter T, Bartsch S et al (2012) Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation. Sleep Breath 16:1105–1112

    PubMed  Article  Google Scholar 

  54. Smith RP, Argod J, Pepin JL, Levy PA (1999) Pulse transit time: an appraisal of potential clinical applications. Thorax 54:452–457

    PubMed  Article  CAS  Google Scholar 

  55. Sugo Y, Ukawa T, Takeda S et al (2010) A novel continuous cardiac output monitor based on pulse wave transit time. Conf Proc IEEE Eng Med Biol Soc 2010:2853–2856

    PubMed  Google Scholar 

  56. Teng XF, Zhang YT (2006) An evaluation of a PTT-based method for noninvasive and cuffless estimation of arterial blood pressure. Conf Proc IEEE Eng Med Biol Soc 1:6049–6052

    PubMed  CAS  Google Scholar 

  57. Tomlinson LA (2012) Methods for assessing arterial stiffness: technical considerations. Curr Opin Nephrol Hypertens 21:655–660

    PubMed  Article  Google Scholar 

  58. Versluis RG, Petri H, Ven CM van de et al (1999) Usefulness of armspan and height comparison in detecting vertebral deformities in women. Osteoporos Int 9:129–133

    PubMed  Article  CAS  Google Scholar 

  59. Wagner DR, Roesch N, Harpes P et al (2010) Relationship between pulse transit time and blood pressure is impaired in patients with chronic heart failure. Clin Res Cardiol 99:657–664

    PubMed  Article  Google Scholar 

  60. Wang Q, Yang P, Zhang Y (2010) Artifact reduction based on Empirical Mode Decomposition (EMD) in photoplethysmography for pulse rate detection. Conf Proc IEEE Eng Med Biol Soc 2010:959–962

    PubMed  Google Scholar 

  61. Wippermann CF, Schranz D, Huth RG (1995) Evaluation of the pulse wave arrival time as a marker for blood pressure changes in critically ill infants and children. J Clin Monit 11:324–328

    PubMed  Article  CAS  Google Scholar 

  62. Wong MY, Pickwell-MacPherson E, Zhang YT (2009) The acute effects of running on blood pressure estimation using pulse transit time in normotensive subjects. Eur J Appl Physiol 107:169–175

    PubMed  Article  Google Scholar 

  63. Wong MY, Pickwell-MacPherson E, Zhang YT, Cheng JC (2011) The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. Eur J Appl Physiol 111:135–144

    PubMed  Article  Google Scholar 

  64. Wong MY, Poon CC, Zhang YT (2009) An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc Eng 9:32–38

    PubMed  Article  Google Scholar 

  65. Wyffels PA, Durnez PJ, Helderweirt J et al (2007) Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg 105:448–452

    PubMed  Article  Google Scholar 

  66. Xue Q, Hu YH, Tompkins WJ (1992) Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans Biomed Eng 39:317–329

    PubMed  Article  CAS  Google Scholar 

  67. Yamashina A, Tomiyama H, Arai T et al (2003) Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens Res 26:801–806

    PubMed  Article  Google Scholar 

  68. Yamashina A, Tomiyama H, Takeda K et al (2002) Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 25:359–364

    PubMed  Article  Google Scholar 

  69. Young CC, Mark JB, White W et al (1995) Clinical evaluation of continuous noninvasive blood pressure monitoring: accuracy and tracking capabilities. J Clin Monit 11:245–252

    PubMed  Article  CAS  Google Scholar 

  70. Zidelmal Z, Amirou A, Adnane M, Belouchrani A (2012) QRS detection based on wavelet coefficients. Comput Methods Programs Biomed 107:490–496

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states the following: A.H. is employee of Somnomedics GmbH and A.P. advises Somnomedics GmbH in scientific aspects of blood pressure measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Patzak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hennig, A., Patzak, A. Continuous blood pressure measurement using pulse transit time. Somnologie 17, 104–110 (2013). https://doi.org/10.1007/s11818-013-0617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-013-0617-x

Keywords

  • Sleep
  • Sleep apnea
  • Blood pressure
  • Pulse wave velocity
  • Validation of blood pressure measurement

Schüsselwörter

  • Schlaf
  • Schlafapnoe
  • Blutdruck
  • Pulswellengeschwindigkeit
  • Validierung der Blutdruckmessung