Abstract
Measurement of blood pressure (BP) during sleep is gaining in importance for clinical and scientific reasons. Diagnosis and follow-up of arterial hypertension requires BP measurement during sleep. Further, continuous BP measurements are necessary to elucidate the pathogenesis of sleep disturbances (e.g., sleep apnea), which are related to arterial hypertension. This review gives a short overview about cuff-based methods and methods for continuous and non-invasive BP measurement with a focus on sleep. The emphasis of this review is on the indirect measurement of BP using the pulse transit time (PTT). This method is based on the functional relation between arterial wall stiffness, pulse wave velocity, and BP. It can be used for absolute BP measurement when combined with calibration. Recent validation and application studies of the BP measurement using the PTT suggest that this method can in principle be used for BP monitoring during sleep. It opens the possibility to study the control of BP during sleep.
Zusammenfassung
Blutdruckmessungen im Schlaf gewinnen sowohl für klinische als auch wissenschaftliche Anwendungen eine immer größere Bedeutung. Diagnose und Verlaufsbeobachtungen der arteriellen Hypertonie schließen Untersuchungen des Blutdrucks im Schlaf ein. Insbesondere kontinuierliche Messungen sind für die weitere Aufklärung der Pathogenese von Schlafstörungen, die mit Hypertonie vergesellschaftet sind, von besonderem Wert. Das betrifft unter anderem das Schlafapnoe-Sndrom. Dieser Artikel gibt einen kurzen Überblick über die manschettenbasierten Methoden und eine neue Methode der kontinuierlichen nichtinvasiven Blutdruckmessung. Der Schwerpunkt liegt auf der indirekten Blutdruckmessung mittels Pulstransitzeit. Die Methode basiert auf der funktionellen Beziehung zwischen der Steifheit arterieller Gefäße, der Pulswellengeschwindigkeit und dem Blutdruck. Unter Anwendung einer Ein-Punkt-Kalibrierung sind Messungen absoluter Blutdruckwerte möglich. Die bisher vorliegenden Validierungsstudien zeigen, dass dieses Verfahren für die kontinuierliche Blutdruckmessung in Schlaf prinzipiell geeignet ist und zur weiteren Aufklärung schlafbezogener Blutdruckregulation beitragen kann.


References
Abibullaev B, Seo HD (2011) A new QRS detection method using wavelets and artificial neural networks. J Med Syst 35:683–691
Ahlstrom C, Johansson A, Uhlin F et al (2005) Noninvasive investigation of blood pressure changes using the pulse wave transit time: a novel approach in the monitoring of hemodialysis patients. J Artif Organs 8:192–197
Allen J, Murray A (1993) Development of a neural network screening aid for diagnosing lower limb peripheral vascular disease from photoelectric plethysmography pulse waveforms. Physiol Meas 14:13–22
Allen J, Murray A (2000) Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol Meas 21:369–377
Argod J, Pepin JL, Levy P (1998) Differentiating obstructive and central sleep respiratory events through pulse transit time. Am J Respir Crit Care Med 158:1778–1783
Awad AA, Ghobashy MA, Ouda W et al (2001) Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg 92:1483–1486
Bartsch S, Ostojic D, Schmalgemeier H et al (2010) Validation of continuous blood pressure measurements by pulse transit time: a comparison with invasive measurements in a cardiac intensive care unit. Dtsch Med Wochenschr 135:2406–2412
Belal SY, Taktak AF, Nevill AJ et al (2002) Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system. Artif Intell Med 24:149–165
Callaghan FJ, Babbs CF, Bourland JD, Geddes LA (1984) The relationship between arterial pulse-wave velocity and pulse frequency at different pressures. J Med Eng Technol 8:15–18
Campbell NR, Chockalingam A, Fodor JG, McKay DW (1990) Accurate, reproducible measurement of blood pressure. CMAJ 143:19–24
Chan GS, Middleton PM, Celler BG et al (2007) Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement. Physiol Meas 28:439–452
Chan GS, Middleton PM, Celler BG et al (2007) Change in pulse transit time and pre-ejection period during head-up tilt-induced progressive central hypovolaemia. J Clin Monit Comput 21:283–293
Chen YT, Chiayg CY, Wang MC et al (2006) Serial changes of pulse wave velocity and correlations with hemodynamic parameters during general anesthesia. Acta Anaesthesiol Taiwan 44:193–198
Davies JI, Struthers AD (2003) Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens 21:463–472
Duprez DA (2012) Arterial stiffness/elasticity in the contribution to progression of heart failure. Heart Fail Clin 8:135–141
Foo JY, Lim CS (2006) Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol Health Care 14:97–108
Foo JY, Lim CS, Wang P (2006) Evaluation of blood pressure changes using vascular transit time. Physiol Meas 27:685–694
Fortin J, Marte W, Grullenberger R et al (2006) Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput Biol Med 36:941–957
Fraden J, Neuman MR (1980) QRS wave detection. Med Biol Eng Comput 18:125–132
Garvey JF, Taylor CT, McNicholas WT (2009) Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J 33:1195–1205
Geddes LA, Voelz MH, Babbs CF et al (1981) Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 18:71–74
Gesche H, Grosskurth D, Kuchler G, Patzak A (2012) Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur J Appl Physiol 112:309–315
Hennig A, Gesche H, Fietze I et al (2012) Messung von apnoebezogenen Blutdruckänderungen mittels Pulstransitzeit und Penaz-Prinzip. Atemwegs- und Lungenkrankheiten 38:1–8
Jaffe LM, Kjekshus J, Gottlieb SS (2012) Importance and management of chronic sleep apnoea in cardiology. Eur Heart J 34:809–815
Jago JR, Murray A (1988) Repeatability of peripheral pulse measurements on ears, fingers and toes using photoelectric plethysmography. Clin Phys Physiol Meas 9:319–330
Katz ES, Lutz J, Black C, Marcus CL (2003) Pulse transit time as a measure of arousal and respiratory effort in children with sleep-disordered breathing. Pediatr Res 53:580–588
Keselbrener L, Keselbrener M, Akselrod S (1997) Nonlinear high pass filter for R-wave detection in ECG signal. Med Eng Phys 19:481–484
Kounalakis SN, Geladas ND (2009) The role of pulse transit time as an index of arterial stiffness during exercise. Cardiovasc Eng 9:92–97
Kurki T, Smith NT, Head N et al (1987) Noninvasive continuous blood pressure measurement from the finger: optimal measurement conditions and factors affecting reliability. J Clin Monit 3:6–13
Lane JD, Greenstadt L, Shapiro D, Rubinstein E (1983) Pulse transit time and blood pressure: an intensive analysis. Psychophysiology 20:45–49
Lass J, Meigas K, Karai D et al (2004) Continuous blood pressure monitoring during exercise using pulse wave transit time measurement. Conf Proc IEEE Eng Med Biol Soc 3:2239–2242
Lesske J, Fletcher EC, Bao G, Unger T (1997) Hypertension caused by chronic intermittent hypoxia—influence of chemoreceptors and sympathetic nervous system. J Hypertens 15:1593–1603
Lutter N, Engl HG, Fischer F, Bauer RD (1996) Noninvasive continuous blood pressure control by pulse wave velocity. Z Kardiol 85(Suppl 3):124–126
Ma T, Zhang YT (2005) A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. Conf Proc IEEE Eng Med Biol Soc 1:996–999
Maglaveras N, Stamkopoulos T, Diamantaras K et al (1998) ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int J Med Inform 52:191–208
Mancia G, Laurent S, Agabiti-Rosei E et al (2009) Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 27:2121–2158
Mitchell GF, Parise H, Benjamin EJ et al (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 43:1239–1245
Molhoek GP, Wesseling KH, Settels JJ et al (1984) Evaluation of the Penaz servo-plethysmo-manometer for the continuous, non-invasive measurement of finger blood pressure. Basic Res Cardiol 79:598–609
Monahan K, Redline S (2011) Role of obstructive sleep apnea in cardiovascular disease. Curr Opin Cardiol 26:541–547
Muehlsteff J, Aubert XL, Schuett M (2006) Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period. Conf Proc IEEE Eng Med Biol Soc 1:5088–5092
Nakagawara M, Yamakoshi K (2000) A portable instrument for non-invasive monitoring of beat-by-beat cardiovascular haemodynamic parameters based on the volume-compensation and electrical-admittance method. Med Biol Eng Comput 38:17–25
Nygaard HA (2008) Measuring body mass index (BMI) in nursing home residents: the usefulness of measurement of arm span. Scand J Prim Health Care 26:46–49
Palatini P, Casiglia E, Gasowski J et al (2011) Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc Health Risk Manag 7:725–739
Payne RA, Symeonides CN, Webb DJ, Maxwell SR (2006) Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J Appl Physiol 100:136–141
Penaz J, Voigt A, Teichmann W (1976) Beitrag zur fortlaufenden indirekten Blutdruckmessung. Z Innere Med 31:1030–1033
Phillips CL, Butlin M, Wong KK, Avolio AP (2013) Is obstructive sleep apnoea causally related to arterial stiffness? A critical review of the experimental evidence. Sleep Med Rev 17:7–18
Pitson DJ, Stradling JR (1998) Value of beat-to-beat blood pressure changes, detected by pulse transit time, in the management of the obstructive sleep apnoea/hypopnoea syndrome. Eur Respir J 12:685–692
Pollak MH, Obrist PA (1983) Aortic-radial pulse transit time and ECG Q-wave to radial pulse wave interval as indices of beat-by-beat blood pressure change. Psychophysiology 20:21–28
Proenca J, Muehlsteff J, Aubert X, Carvalho P (2010) Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population? Conf Proc IEEE Eng Med Biol Soc 2010:598–601
Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667
Sawada Y, Yamakoshi K (1985) A correlation analysis between pulse transit time and instantaneous blood pressure measured indirectly by the vascular unloading method. Biol Psychol 21:1–9
Schiffrin EL (2004) Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am J Hypertens 17:39S–48S
Schmalgemeier H, Bitter T, Bartsch S et al (2012) Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation. Sleep Breath 16:1105–1112
Smith RP, Argod J, Pepin JL, Levy PA (1999) Pulse transit time: an appraisal of potential clinical applications. Thorax 54:452–457
Sugo Y, Ukawa T, Takeda S et al (2010) A novel continuous cardiac output monitor based on pulse wave transit time. Conf Proc IEEE Eng Med Biol Soc 2010:2853–2856
Teng XF, Zhang YT (2006) An evaluation of a PTT-based method for noninvasive and cuffless estimation of arterial blood pressure. Conf Proc IEEE Eng Med Biol Soc 1:6049–6052
Tomlinson LA (2012) Methods for assessing arterial stiffness: technical considerations. Curr Opin Nephrol Hypertens 21:655–660
Versluis RG, Petri H, Ven CM van de et al (1999) Usefulness of armspan and height comparison in detecting vertebral deformities in women. Osteoporos Int 9:129–133
Wagner DR, Roesch N, Harpes P et al (2010) Relationship between pulse transit time and blood pressure is impaired in patients with chronic heart failure. Clin Res Cardiol 99:657–664
Wang Q, Yang P, Zhang Y (2010) Artifact reduction based on Empirical Mode Decomposition (EMD) in photoplethysmography for pulse rate detection. Conf Proc IEEE Eng Med Biol Soc 2010:959–962
Wippermann CF, Schranz D, Huth RG (1995) Evaluation of the pulse wave arrival time as a marker for blood pressure changes in critically ill infants and children. J Clin Monit 11:324–328
Wong MY, Pickwell-MacPherson E, Zhang YT (2009) The acute effects of running on blood pressure estimation using pulse transit time in normotensive subjects. Eur J Appl Physiol 107:169–175
Wong MY, Pickwell-MacPherson E, Zhang YT, Cheng JC (2011) The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique. Eur J Appl Physiol 111:135–144
Wong MY, Poon CC, Zhang YT (2009) An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc Eng 9:32–38
Wyffels PA, Durnez PJ, Helderweirt J et al (2007) Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg 105:448–452
Xue Q, Hu YH, Tompkins WJ (1992) Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans Biomed Eng 39:317–329
Yamashina A, Tomiyama H, Arai T et al (2003) Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens Res 26:801–806
Yamashina A, Tomiyama H, Takeda K et al (2002) Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 25:359–364
Young CC, Mark JB, White W et al (1995) Clinical evaluation of continuous noninvasive blood pressure monitoring: accuracy and tracking capabilities. J Clin Monit 11:245–252
Zidelmal Z, Amirou A, Adnane M, Belouchrani A (2012) QRS detection based on wavelet coefficients. Comput Methods Programs Biomed 107:490–496
Conflict of interest
On behalf of all authors, the corresponding author states the following: A.H. is employee of Somnomedics GmbH and A.P. advises Somnomedics GmbH in scientific aspects of blood pressure measurement.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hennig, A., Patzak, A. Continuous blood pressure measurement using pulse transit time. Somnologie 17, 104–110 (2013). https://doi.org/10.1007/s11818-013-0617-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11818-013-0617-x