Skip to main content
Log in

Fractal dimension of the sleep state waveform in obstructive sleep apnea

Fraktale Dimension der Wellenform von Schlafphasen bei obstruktiver Schlafapnoe

  • Review
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Abstract

Question of the study

Sleep represents a complex interplay of biological processes. This study examines whether the dynamics of the sleep state changes exhibit fractal properties and the implications of such changes in obstructive sleep apnea.

Patients and methods

Overnight polysomnography data on 25 volunteers from a publicly available data set were analyzed to assess whether the sleep states over time demonstrated a fractal nature. Fractal dimension of the raw sleep state waveform as well as a zero-order-hold transformed counterpart were estimated using three methods: Katz, Sevcik, and Lee. Statistical analyses were conducted using correlation, multivariate linear and logistic regression, autocorrelation, power spectrum analysis, and receiver-operating characteristic curve.

Results

Both untransformed and transformed sleep state waveforms exhibited self-similarity. FD of the transformed waveform was significantly associated with a higher apnea–hypopnea index irrespective of the measure of FD. A high proportion of the transition from state 0–2 was significantly associated with a higher fractal dimension and a higher risk of moderate/severe apnea.

Conclusion

In this study, it was demonstrated that the fractal nature of the sleep state waveform is affected in obstructive sleep apnea.

Zusammenfassung

Fragestellung

Schlaf stellt eine komplexes Zusammenspiel biologischer Vorgänge dar. In der vorliegenden Studie wird die Dynamik der Veränderungen von Schlafphasen im Hinblick auf fraktale Eigenschaften und Auswirkungen solcher Veränderungen bei obstruktiver Schlafapnoe untersucht.

Patienten und Methoden

Daten von über Nacht durchgeführten Polysomnographien von 25 Probanden aus einer öffentlich zugänglichen Datenbank wurden daraufhin untersucht, ob die Schlafphasen über die Zeit fraktale Eigenschaften aufwiesen. Die fraktale Dimension (FD) der Rohdaten zur Wellenform der Schlafphasen sowie ein Gegenstück mit Zero-order-hold-Transformation wurden anhand der 3 Methoden nach Katz, Sevcik und Lee ermittelt. Statistische Analysen erfolgten mittels Korrelation, multivariater linerarer und logistischer Regression, Autokorrelation, Power-Spektrum-Analyse und ROC („receiver-operating characteristic curve“).

Ergebnisse

Sowohl die nichttransformierten als auch die transformierten Wellenformen von Schlafphasen wiesen Selbstähnlichkeit auf. Die FD der transformierten Wellenformen war unabhängig von einer FD-Messung signifikant mit einem höheren Apnoe-Hypopnoe-Index assoziiert. Ein hoher Anteil der Übergänge von Stadium 0 zu Stadium 2 war signifikant mit einer höheren FD und einem höheren Risiko einer mittelgradigen/schweren Apnoe verbunden.

Fazit

In der vorliegenden Studie wurde gezeigt, dass die fraktalen Eigenschaften der Wellenform von Schlafphasen bei obstruktiver Schlafapnoe beeinflusst werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Havlin S, Buldyrev SV, Bunde A et al (1999) Scaling in nature: from DNA through heartbeats to weather. Physica A 273(1–2):46–69

    Google Scholar 

  2. Susmakova K, Krakovska A (2008) Discrimination ability of individual measures used in sleep stages classification. Artif Intell Med 44(3):261–277

    Article  PubMed  Google Scholar 

  3. Acharya UR, Chua EC, Faust O et al (2010) Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters. Physiol Meas 32(3):287–303

    Article  Google Scholar 

  4. Acharya UR, Faust O, Kannathal N et al (2005) Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 80(1):37–45

    Article  Google Scholar 

  5. Bojic T, Vuckovic A, Kalauzi A (2010) Modeling EEG fractal dimension changes in wake and drowsy states in humans—a preliminary study. J Theor Biol 262(2):214–222

    Article  PubMed  Google Scholar 

  6. Chouvarda I, Rosso V, Mendez MO et al (2010) Assessment of the EEG complexity during activations from sleep. Comput Methods Programs Biomed

  7. Yaggi HK, Strohl KP (2010) Adult obstructive sleep apnea/hypopnea syndrome: definitions, risk factors, and pathogenesis. Clin Chest Med 31(2):179–186

    Article  PubMed  Google Scholar 

  8. Goldberger AL, Amaral LA, Glass L et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):E215–E220

    PubMed  CAS  Google Scholar 

  9. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects 1968. Public Health Service, United States Government Printing Office, Bethesda, MD, USA

  10. Looze DP (2009) Linear-quadratic-Gaussian control for adaptive optics systems using a hybrid model. J Opt Soc Am A Opt Image Sci Vis 26(1):1–9

    Article  PubMed  Google Scholar 

  11. Zhang X, Ashton-Miller JA, Stohler CS (1993) A closed-loop system for maintaining constant experimental muscle pain in man. IEEE Trans Biomed Eng 40(4):344–352

    Article  PubMed  CAS  Google Scholar 

  12. Paramanathan P, Uthayakumar R (2008) Application of fractal theory in analysis of human electroencephalographic signals. Comput Biol Med 38:372–378

    Article  PubMed  CAS  Google Scholar 

  13. Katz M (1988) Fractals and the analysis of waveforms. Comput Biol Med 18:145–56

    Article  PubMed  CAS  Google Scholar 

  14. Sevcik C (2006) On fractal dimension of waveforms. Chaos Solitons Fractals 28:579–580

    Article  Google Scholar 

  15. Lee KC, Ho SD, Yu CC et al (2003) Fractal analysis of temporal variation of air pollutant concentration by box counting. Environ Model Software 18:243–251

    Article  Google Scholar 

  16. Pedrosa RP, Drager LF, Genta PR et al (2010) Obstructive sleep apnea is common and independently associated with atrial fibrillation in patients with hypertrophic cardiomyopathy. Chest 137(5):1078–1084

    Article  PubMed  Google Scholar 

  17. Carrozzi M, Accardo A, Bouquet F (2004) Analysis of sleep-stage characteristics in full-term newborns by means of spectral and fractal parameters. Sleep 27(7):1384–1393

    PubMed  Google Scholar 

  18. Chouvarda I, Rosso V, Mendez MO et al (2010) EEG complexity during sleep: on the effect of micro and macro sleep structure. Conf Proc IEEE Eng Med Biol Soc 2010:5959–5962

    PubMed  CAS  Google Scholar 

  19. Peiris MR, Jones RD, Davidson PR et al (2005) Fractal dimension of the EEG for detection of behavioural microsleeps. Conf Proc IEEE Eng Med Biol Soc 6:5742–5745

    PubMed  CAS  Google Scholar 

  20. Chokroverty S (2010) Overview of sleep & sleep disorders. Indian J Med Res 131:126–140

    PubMed  CAS  Google Scholar 

  21. Mason TB 2nd, Teoh L, Calabro K et al (2008) Rapid eye movement latency in children and adolescents. Pediatr Neurol 39(3):162–169

    Article  PubMed  Google Scholar 

  22. Watson H, Landa J, Sackner MA (1975) Automated system for measurement of mechanics of breathing. Med Instrum 9(1):3–10

    PubMed  CAS  Google Scholar 

  23. Goldberger AL (2006) Giles F. Filley lecture. Complex systems. Proc Am Thorac Soc 3(6):467–471

    Article  PubMed  Google Scholar 

  24. Ferenets R, Lipping T, Suominen P et al (2006) Comparison of the properties of EEG spindles in sleep and propofol anesthesia. Conf Proc IEEE Eng Med Biol Soc 1:6356–6359

    Article  PubMed  Google Scholar 

  25. Ishibashi K, Kitamura S, Kozaki T et al (2007) Inhibition of heart rate variability during sleep in humans by 6700 K pre-sleep light exposure. J Physiol Anthropol 26(1):39–43

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kulkarni MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakre, T., Mamtani, M., Ujaoney, S. et al. Fractal dimension of the sleep state waveform in obstructive sleep apnea. Somnologie 15, 249–256 (2011). https://doi.org/10.1007/s11818-011-0537-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-011-0537-6

Keywords

Schlüsselwörter

Navigation