Skip to main content
Log in

Eingeschränkte Leistungsfähigkeit bei pneumologischen Erkrankungen

Hat der Schlaf einen Einfluss?

Reduced exercise capacity and respiratory diseases

Does sleep have an influence?

  • Schwerpunkt
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Schlafentzug reduziert bei Gesunden die körperliche Leistungsfähigkeit, v. a. bei komplexer motorischer Aktivität. Statische und dynamische Lungenfunktionswerte werden etwa um 5% bei Patienten mit chronisch obstruktiver Lungenerkrankung (COPD) reduziert. Besonders auffällig ist eine zunehmende Hypoventilation bei Schlafentzug, wenn vorher eine hyperkapnische Insuffizienz tagsüber besteht. Bei diesen Patienten zeigt sich auch im Schlaf eine deutliche Steigerung der Hypoventilation, sichtbar an verstärkter Hyperkapnie und Hypoxämie. Das führte zur Hypothese, dass der Schlaf bzw. eine Schlafstörung per se einen Einfluss auf die hyperkapnische Insuffizienz hat.

Die Rekompensation der hyperkapnischen Insuffizienz durch intermittierende Beatmung ist unabhängig von der Dauer der Beatmung während des Schlafs oder im Wachzustand identisch. Dies stärkt die Hypothese, dass der Organismus bei der hyperkapnischen Insuffizienz den Schlaf zumindest teilweise zur Erholung der überlasteten Atemmuskulatur durch Entlastung benutzt, vermutlich durch Wiederauffüllung der Glykogenspeicher im Muskel.

Die vorgestellten Daten zeigen, dass der Schlaf bei der hyperkapnischen Insuffizienz einen positiven Effekt hat. Bei der hypoxischen Insuffizienz hat der Schlaf keinen spezifischen Effekt.

Abstract

Sleep deprivation reduces physical fitness and in particular complex motor abilities in healthy people. Static and dynamic lung function parameters are reduced by 5% in chronic obstructive pulmonary disease (COPD). Progressive hypoventilation associated with sleep deprivation, however, is most notable in the presence of existing hypercapnic insufficiency during the day. Affected patients demonstrate enhanced hypoventilation during sleep, which becomes apparent by pronounced hypercapnea and hypoxemia. This association has led to the hypothesis that sleep and sleep disturbances, respectively, have an impact on the hypercapnic insufficiency.

Intermittent ventilation compensates hypercapnic insufficiency independent from the duration of ventilation in the same manner, regardless of whether the patient is awake or asleep. This reinforces the hypothesis that the human organism suffering from hypercapnea uses sleep to unload and recompensate the overloaded respiratory muscles, most likely by repletion of glycogen stores.

The data in the review suggest that sleep has a positive effect on hypercapnic insufficiency. No specific impact of sleep, however, is seen in hypoxemic insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Dinges DF, Pack F, Williams K et al (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20:267–277

    PubMed  CAS  Google Scholar 

  2. Scott JP, McNaughton LR, Polman RC (2006) Effects of sleep deprivation and exercise on cognitive, motor performance and mood. Physiol Behav 87:396–408

    Article  PubMed  CAS  Google Scholar 

  3. Edwards BJ, Waterhouse J (2009) Effects of one night of partial sleep deprivation upon diurnal rhythms of accuracy and consistency in throwing darts. Chronobiol Int 26:756–768

    Article  PubMed  Google Scholar 

  4. Souissi N, Sesboüé B, Gauthier A et al (2003) Effects of one night’s sleep deprivation on anaerobic performance the following day. Eur J Appl Physiol 89:359–366

    Article  PubMed  Google Scholar 

  5. Oliver SJ, Costa RJ, Laing SJ et al (2009) One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol 107:155–161

    Article  PubMed  Google Scholar 

  6. Phillips BA, Cooper KR, Burke TV (1987) The effect of sleep loss on breathing in chronic obstructive pulmonary disease. Chest 91:29–32

    Article  PubMed  CAS  Google Scholar 

  7. Douglas NJ, White DP, Weil JV et al (1982) Hypercapnic ventilatory response in sleeping adults. Am Rev Respir Dis 126:758–762

    PubMed  CAS  Google Scholar 

  8. McNicholas WT (1997) Impact of sleep in respiratory failure. Eur Respir J 10:920–933

    Article  PubMed  CAS  Google Scholar 

  9. Tirlapur VG, Mir MA (1982) Nocturnal hypoxemia and associated electrocardiographic changes in patients with chronic obstructive airways disease. N Engl J Med 21(306):125–130

    Article  Google Scholar 

  10. Montserrat JM, Ballester E, Olivi H et al (1995) Time-course of stepwise CPAP titration. Behavior of respiratory and neurological variables. Am J Respir Crit Care Med 152:1854–1859

    PubMed  CAS  Google Scholar 

  11. Calero G, Farre R, Ballester E et al (2006) Physiological consequences of prolonged periods of flow limitation in patients with sleep apnea hypopnea syndrome. Respir Med 100:813–817

    Article  PubMed  Google Scholar 

  12. Sukegawa M, Noda A, Yasuda Y et al (2009) Impact of microarousal associated with increased negative esophageal pressure in sleep-disordered breathing. Sleep Breath 13:369–373

    Article  PubMed  Google Scholar 

  13. Köhler D (2010) Wieviel Hypoxämie verträgt der Mensch. Dtsch Med Wochenschr 135:474–477

    Article  PubMed  Google Scholar 

  14. Fleetham J, West P, Mezon B et al (1982) Sleep, arousals, and oxygen desaturation in chronic obstructive pulmonary disease. The effect of oxygen therapy. Am Rev Respir Dis 126:429–433

    PubMed  CAS  Google Scholar 

  15. Tregear S, Reston J, Schoelles K, Phillips B (2010) Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. Sleep 33:1373–1380

    PubMed  Google Scholar 

  16. Leuenberger U, Jacob E, Sweer L et al (1995) Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia. J Appl Physiol 79:581–588

    PubMed  CAS  Google Scholar 

  17. Narkiewicz K, Borne PJ van de, Pesek CA et al (1999) Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation 99:1183–1189

    PubMed  CAS  Google Scholar 

  18. Waradekar NV, Sinoway LI, Zwillich CW, Leuenberger UA (1996) Influence of treatment on muscle sympathetic nerve activity in sleep apnea. Am J Respir Crit Care Med 153:1333–1338

    PubMed  CAS  Google Scholar 

  19. Redolfi S, Yumino D, Ruttanaumpawan P et al (2009) Relationship between overnight rostral fluid shift and obstructive sleep apnea in nonobese men. Am J Respir Crit Care Med 179:241–246

    Article  PubMed  Google Scholar 

  20. Barchfeld T, Schönhofer B, Wenzel M, Köhler D (1997) Atemarbeit zur Differenzierung verschiedener Formen der schlafbezogenen Atmungsstörung. Pneumologie 51:931–935

    PubMed  CAS  Google Scholar 

  21. Powers MA (2008) The obesity hypoventilation syndrome. Respir Care 53:1723–1730

    PubMed  Google Scholar 

  22. Piper AJ (2011) Obesity hypoventilation syndrome – the big and the breathless. Sleep Med Rev 15:79–89

    Article  PubMed  Google Scholar 

  23. Resta O, Foschino BMP, Brindicci C et al (2002) Hypercapnia in overlap syndrome: possible determinant factors. Sleep Breath 6:11–18

    Article  PubMed  Google Scholar 

  24. Lee R, McNicholas WT (2011) Obstructive sleep apnea in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med 17:79–83

    Article  PubMed  Google Scholar 

  25. Randerath WJ, Stieglitz S, Galetke W et al (2008) Pathophysiologie des Obesity-Hyopoventilationssyndroms. Pneumologie 62:398–403

    Article  PubMed  CAS  Google Scholar 

  26. Roussos C, Macklem PT (1982) The respiratory muscles. N Engl J Med 307:786–797

    Article  PubMed  CAS  Google Scholar 

  27. Bégin P, Grassino A (1991) Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease. Am Rev Respir Dis 143:905–912

    PubMed  Google Scholar 

  28. Bégin P, Grassino A (2000) Chronic alveolar hypoventilation helps to maintain the inspiratory muscle effort of COPD patients within sustainable limits. Chest 117:271–273

    Article  Google Scholar 

  29. Köhler D, Schönhofer B (1997) How important is the differentiation between apnea and hypopnea? Respiration 64:15–21

    Article  PubMed  Google Scholar 

  30. Köhler D, Schönhofer B, Haidl P, Kemper P (2000) Ursachen und Therapie der Hyperkapnie. Pneumologie 54:434–439

    Article  PubMed  Google Scholar 

  31. Aida A, Miyamoto K, Nishimura M et al (1998) Prognostic value of hypercapnia in patients with chronic respiratory failure during long-term oxygen therapy. Am J Respir Crit Care Med 158:188–193

    PubMed  CAS  Google Scholar 

  32. Chailleux E, Fauroux B, Binet F et al (1996) Predictors of survival in patients receiving domiciliary oxygen therapy or mechanical ventilation. A 10-year analysis of ANTADIR observatory. Chest 109:741–749

    Article  PubMed  CAS  Google Scholar 

  33. Popper KR (1963) Science: problems, aims, responsibilities. Fed Proc 22:961–972

    PubMed  CAS  Google Scholar 

  34. White DP, Douglas NJ, Pickett CK et al (1983) Sleep deprivation and the control of ventilation. Am Rev Respir Dis 128:984–986

    PubMed  CAS  Google Scholar 

  35. Meurice JC, Marc I, Sériès F (1995) Influence of sleep on ventilatory and upper airway response to CO2 in normal subjects and patients with COPD. Am J Respir Crit Care Med 152:1620–1626

    PubMed  CAS  Google Scholar 

  36. Bullemer F, Heindl S, Karg O (1999) Undines Fluch im Erwachsenenalter. Pneumologie 53:91–92

    Google Scholar 

  37. Dellborg C, Olofson J, Hamnegård CH et al (2000) Ventilatory response to CO2 re-breathing before and after nocturnal nasal intermittent positive pressure ventilation in patients with chronic alveolar hypoventilation. Respir Med 94:1154–1160

    Article  PubMed  CAS  Google Scholar 

  38. Forster HV, Smith CA (2010) Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol 108:989–994

    Article  PubMed  CAS  Google Scholar 

  39. Schönhofer B, Geibel M, Sonneborn M et al (1997) Daytime mechanical ventilation in chronic respiratory insufficiency. Eur Respir J 10:2840–2846

    Article  PubMed  Google Scholar 

  40. Schönhofer B, Ardes P, Geibel M et al (1997) Evaluation of a movement detector to measure daily activity in patients with chronic lung disease. Eur Respir J 10:2814–2819

    Article  PubMed  Google Scholar 

  41. Schönhofer B, Wallstein S, Wiese C, Köhler D (2001) Noninvasive mechanical ventilation improves endurance performance in patients with chronic respiratory failure due to thoracic restriction. Chest 119:1371–1378

    Article  PubMed  Google Scholar 

  42. Blankenburg T, Roloff D, Schädlich S et al (2008) Rekompensation von schwerem hyperkapnischem Versagen bei Patienten mit COPD unter 4 Wochen intermittierender nicht invasiver Heimbeatmung. Pneumologie 62:126–131

    Article  PubMed  Google Scholar 

  43. Schönhofer B, Barchfeld T, Wenzel M, Köhler D (2001) Long term effects of non-invasive mechanical ventilation on pulmonary haemodynamics in patients with chronic respiratory failure. Thorax 56:524–528

    Article  PubMed  Google Scholar 

  44. Köhler D (2009) Analogien zwischen Herz- und Atemmuskelinsuffizienz Bedeutung in der Klinik. Dtsch Med Wochenschr 134:147–153

    Article  PubMed  Google Scholar 

  45. Febbraio MA, Dancey J (1999) Skeletal muscle energy metabolism during prolonged, fatiguing exercise. J Appl Physiol 87:2341–2347

    PubMed  CAS  Google Scholar 

  46. Gillum TL, Dumke CL, Ruby BC (2006) Muscle glycogenolysis and resynthesis in response to a half Ironman triathlon: a case study. Int J Sports Physiol Perform 1:408–413

    PubMed  Google Scholar 

  47. Petrozzino JJ, Scardella AT, Edelman NH, Santiago TV (1993) Respiratory muscle acidosis stimulates endogenous opioids during inspiratory loading. Am Rev Respir Dis 147:607–615

    PubMed  CAS  Google Scholar 

  48. Köhler D, Haidl P (2011) Sauerstoff in der Medizin. Pneumologie 65:25–35

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Köhler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, D., Dellweg, D. & Kerl, J. Eingeschränkte Leistungsfähigkeit bei pneumologischen Erkrankungen. Somnologie 15, 205–211 (2011). https://doi.org/10.1007/s11818-011-0536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11818-011-0536-7

Schlüsselwörter

Keywords

Navigation