Skip to main content
Log in

Identification of a nuclear localization signal mediating the nuclear import of Arabidopsis splicing factor1

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The splicing factor1 protein (SF1) is involved in branch point recognition of pre-mRNA introns during the early stages of spliceosome assembly in the nucleus. In this study, we aimed to characterize the nuclear localization signal (NLS) of the Arabidopsis SF1 protein (AtSF1). There are two putative NLS sequences (RRKRRSR and RKRKSR) at the N-terminal side of the AtSF1 protein. Analysis of green fluorescence protein (GFP)-tagged AtSF1 deletion constructs indicated that the RKRKSRWADDE sequence (from the 124th to 134th amino acid residues) is necessary for GFP-tagged AtSF1 protein for the localization in the nucleus. Further analysis of the RKRKSRWADDE sequence using site-directed mutagenesis demonstrated that at least two basic amino acid residues (R and K) within the sequence is essential for the complete nuclear localization of GFP-tagged AtSF1 protein. Taken together, our findings demonstrated that only one of the two predicted NLS candidates of the AtSF1 protein is necessary for its nuclear localization, and at least two basic amino acid residues within the motif are crucial for its function. This feature of NLS may be unique in plant SF1 proteins because there is only one predicted NLS in fungal and metazoan counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arning S, Gruter P, Bilbe G, Kramer A (1996) Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2:794–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gama-Carvalho M, Krauss RD, Chiang L, Valcarcel J, Green MR, Carmo-Fonseca M (1997) Targeting of U2AF65 to sites of active splicing in the nucleus. J Cell Biol 137:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gama-Carvalho M, Carvalho MP, Kehlenbach A, Valcarcel J, Carmo-Fonseca M (2001) Nucleocytoplasmic shuttling of heterodimeric splicing factor U2AF. J Biol Chem 276:13104–13112

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bustos JF, Wagner P, Hall MN (1991) Nuclear import substrates compete for a limited number of binding sites. Evidence for different classes of yeast nuclear import receptors. J Biol Chem 266:22303–22306

    Article  CAS  PubMed  Google Scholar 

  • Garrey SM, Voelker R, Berglund JA (2006) An extended RNA binding site for the yeast branch point-binding protein and the role of its zinc knuckle domains in RNA binding. J Biol Chem 281:27443–27453

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Vilardell J, Query CC (2002) Pre-spliceosome formation in S. pombe requires a stable complex of SF1-U2AF(59)-U2AF(23). EMBO J 21:5516–5526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang YH, Park HY, Lee KC, Thu MP, Kim SK, Suh MC, Kang H, Kim JK (2014) A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. Plant J 78:591–603

    Article  CAS  PubMed  Google Scholar 

  • Kalderon D, Smith AE (1984) In vitro mutagenesis of a putative DNA binding domain of SV40 large-T. Virology 139:109–137

    Article  CAS  PubMed  Google Scholar 

  • Kambach C, Mattaj IW (1994) Nuclear transport of the U2 snRNP-specific U2B’’ protein is mediated by both direct and indirect signalling mechanisms. J Cell Sci 107(Pt 7):1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Kenna MA, Brachmann CB, Devine SE, Boeke JD (1998) Invading the yeast nucleus: a nuclear localization signal at the C terminus of Ty1 integrase is required for transposition in vivo. Mol Cell Biol 18:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kierzkowski D, Kmieciak M, Piontek P, Wojtaszek P, Szweykowska-Kulinska Z, Jarmolowski A (2009) The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. Plant J 59:814–825

    Article  PubMed  Google Scholar 

  • Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H (2009) Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 284:478–485

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Jin S, Kim SY, Kim W, Ahn JH (2017a) A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in Arabidopsis mesophyll protoplasts. Plant Methods 13:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KC, Jang YH, Kim SK, Park HY, Thu MP, Lee JH, Kim JK (2017b) RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. Plant Cell Rep 36:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Chung KS, Lee HT, Park JH, Lee JH, Kim JK (2020) Role of Arabidopsis splicing factor SF1 in temperature-responsive alternative splicing of FLM pre-mRNA. Front Plant Sci 11:596354

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin KT, Lu RM, Tarn WY (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol 24:9176–9185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Luyten I, Bottomley MJ, Messias AC, Houngninou-Molango S, Sprangers R, Zanier K, Kramer A, Sattler M (2001) Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Luo Y, Shen L, Guo R, Zhan Z, Yuan N, Sha R, Qian W, Wang Z, Xie Z, Wu W, Feng Y (2020) Splicing factor SRSF1 Is essential for satellite cell proliferation and postnatal maturation of neuromuscular junctions in mice. Stem Cell Rep 15:941–954

    Article  CAS  Google Scholar 

  • Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, Ruan H (2021) Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal 19:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manceau V, Kielkopf CL, Sobel A, Maucuer A (2008) Different requirements of the kinase and UHM domains of KIS for its nuclear localization and binding to splicing factors. J Mol Biol 381:748–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michlewski G, Sanford JR, Caceres JF (2008) The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol Cell 30:179–189

    Article  CAS  PubMed  Google Scholar 

  • Moore SP, Rinckel LA, Garfinkel DJ (1998) A Ty1 integrase nuclear localization signal required for retrotransposition. Mol Cell Biol 18:1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HY, Lee KC, Jang YH, Kim SK, Thu MP, Lee JH, Kim JK (2017) The Arabidopsis splicing factors, AtU2AF65, AtU2AF35, and AtSF1 shuttle between nuclei and cytoplasms. Plant Cell Rep 36:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Rain JC, Rafi Z, Rhani Z, Legrain P, Kramer A (1998) Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. RNA 4:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P (2010) Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. Plant Physiol 153:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AS, Day IS, Gohring J, Barta A (2012) Localization and dynamics of nuclear speckles in plants. Plant Physiol 158:67–77

    Article  CAS  PubMed  Google Scholar 

  • Rino J, Carvalho T, Braga J, Desterro JM, Luhrmann R, Carmo-Fonseca M (2007) A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol 3:2019–2031

    Article  CAS  PubMed  Google Scholar 

  • Rino J, Desterro JM, Pacheco TR, Gadella TW Jr, Carmo-Fonseca M (2008) Splicing factors SF1 and U2AF associate in extraspliceosomal complexes. Mol Cell Biol 28:3045–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Article  CAS  PubMed  Google Scholar 

  • Selenko P, Gregorovic G, Sprangers R, Stier G, Rhani Z, Kramer A, Sattler M (2003) Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell 11:965–976

    Article  CAS  PubMed  Google Scholar 

  • Stankovic N, Schloesser M, Joris M, Sauvage E, Hanikenne M, Motte P (2016) Dynamic distribution and interaction of the Arabidopsis SRSF1 subfamily splicing factors. Plant Physiol 170:1000–1013

    Article  CAS  PubMed  Google Scholar 

  • Tillemans V, Dispa L, Remacle C, Collinge M, Motte P (2005) Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. Plant J 41:567–582

    Article  CAS  PubMed  Google Scholar 

  • Twyffels L, Gueydan C, Kruys V (2011) Shuttling SR proteins: more than splicing factors. FEBS J 278:3246–3255

    Article  CAS  PubMed  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA (2012) Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 443:851–856

    Article  CAS  PubMed  Google Scholar 

  • Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    Article  CAS  PubMed  Google Scholar 

  • Wang EJ (2014) The nuclear localization signal and the promoter of Arabidopsis pre-mRNA splicing factor AtSF1. Korea University, Seoul

    Google Scholar 

  • Wang BB, Brendel V (2006) Molecular characterization and phylogeny of U2AF35 homologs in plants. Plant Physiol 140:624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bruderer S, Rafi Z, Xue J, Milburn PJ, Kramer A, Robinson PJ (1999) Phosphorylation of splicing factor SF1 on Ser20 by cGMP-dependent protein kinase regulates spliceosome assembly. EMBO J 18:4549–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Maucuer A, Gupta A, Manceau V, Thickman KR, Bauer WJ, Kennedy SD, Wedekind JE, Green MR, Kielkopf CL (2013) Structure of phosphorylated SF1 bound to U2AF(6)(5) in an essential splicing factor complex. Structure 21:197–208

    Article  CAS  PubMed  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Madl T, Bagdiul I, Kern T, Kang HS, Zou P, Mausbacher N, Sieber SA, Kramer A, Sattler M (2013) Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3’-splice site recognition. Nucleic Acids Res 41:1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY (2020) Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC Plant Biol 20:379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Basic Science Research Program through a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (2019R1F1A1060009 to J.-K. Kim), and a Korea University Grant (to J.-K. Kim). This work was also supported in part by a grant (PJ01532503 to J.H. Lee) from the Rural Development Administration (RDA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Kook Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 977 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, EJ., Kim, YC., Lee, J.H. et al. Identification of a nuclear localization signal mediating the nuclear import of Arabidopsis splicing factor1. Plant Biotechnol Rep 15, 775–781 (2021). https://doi.org/10.1007/s11816-021-00722-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00722-0

Keywords

Navigation