Skip to main content
Log in

Characterization and identification of OsFTL8 gene in rice

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The rice genome contains 13 Flowering Locus T-Like (FT-Like) genes, among which, OsFTL2/Hd3a and OsFTL3/RFT1 are characterized as florigen-encoding genes, promoting rice flowering under short-day and long-day conditions, respectively. However, the functions of the other FT-Like members are still unknown in rice. In this study, we characterized and identified a member of FT-Like family, OsFTL8 gene. The investigation of photoperiodic expression pattern showed that OsFTL8 transcription was mainly induced under short-day conditions. The qRT-PCR and GUS staining assays indicated that OsFTL8 was broadly expressed in various organs, including stems, leaves and panicles. OsFTL8 overexpression transgenic lines and its knockout mutants displayed no obvious change in their heading date, compared with the wild type. However, the pollen viability and seed setting rate were decreased in the overexpression transgenic lines. OsFTL8 localizes in both nucleus and cytoplasm. And we found that OsFTL8 does not interact with OsFD1 in vivo, suggesting that OsFTL8 may not be the component of florigen activation complex (FAC). In summary, our results indicate that OsFTL8 is associated with pollen viability and not involved in regulating rice flowering time, implying functional divergence of FT-Like members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bi XJ, Esse WV, Mulki MA, Kirschner G, Zhong J, Simon R, Korff MV (2019) Centroradialis interacts with Flowering locus T-like genes to control floret development and grain number. Plant Physiol 180:1013–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai MH, Chen SH, Wu MM, Zheng TH, Zhou L, Li CN, Zhang H, Wang JC, Xu XY, Chai JT, Ren YL, Guo XP, Zhang X, Lei CL, Cheng ZJ, Wang J, Jiang L, Zhai HQ, Wang HY, Zhu SS, Wan JM (2019) Early heading 7 interacts with DTH8, and regulates flowering time in rice. Plant Cell Rep 38(5):521–532

    CAS  PubMed  Google Scholar 

  • Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61:579–590

    CAS  PubMed  Google Scholar 

  • Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G (2007) Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19:847–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du AP, Tian W, Wei MH, Yan W, He H, Zhou D, Huang X, Li S, Ouyang XH (2017) The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol Plant 10:948–961

    CAS  PubMed  Google Scholar 

  • Fang MC, Zhou ZJ, Zhou XS, Yang HY, Li MR, Li HQ (2019) Overexpression of OsFTL10 induces early flowering and improves drought tolerance in Oryza sativa L. Peer J. https://doi.org/10.7717/peerj.6422

    Article  PubMed  PubMed Central  Google Scholar 

  • Gui J, Liu C, Shen J, Li L (2014) Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance. Plant Physio 166:1463–1478

    Google Scholar 

  • Guo JX, Liu YG (2012) Molecular control of male reproductive development and pollen fertility in rice. J Integr Plant Biol 54(12):967–978

    CAS  PubMed  Google Scholar 

  • Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47(11):1457–1472

    CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    CAS  PubMed  Google Scholar 

  • Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23:515–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat genet 42(7):635–639

    CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS fusion system. Plant Mol Biol Rep 5(4):387–405

    CAS  Google Scholar 

  • Kabayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) Antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Google Scholar 

  • Kaneko-Suzuki M, Kurihara-Ishikawa R, Okushita-Terakawa C, Kojima C, Nagano-Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka KI (2018) TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol 59(3):458–468

    CAS  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz L (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156(8):1967–1977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105

    CAS  PubMed  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    CAS  PubMed  Google Scholar 

  • Lee YS, An G (2015) OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. J Plant Biol 58:137–145

    CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Peer YV, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lorenzo CD, Garcia-Gagliardi P, Antonietti MS, Sanchez-Lamas M, Mancini E, Dezar CA, Vazquez M, Watson G, Yanovsky MJ, Cerdan PD (2020) Improvement of alfalfa forage quality and management through the down-regulation of MsFTa1. Plant Biotech J 18:944–954

    CAS  Google Scholar 

  • Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408

    CAS  PubMed  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    CAS  PubMed  Google Scholar 

  • Mu H, Ke JH, Liu W, Zhuang CX, Yip WK (2009) UDP-glucose pyrophosphorylase2 (OsUgp2), a pollen-preferential gene in rice, plays a critical role in starch accumulation during pollen maturation. Chinese Sci Bull 54(2):234–243

    CAS  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29(6):743–750

    CAS  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucl Acids Res 42(W1):W320-324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw LM, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J (2019) FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. J Exp Bot 70(1):193–204

    CAS  PubMed  Google Scholar 

  • Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D (2011) Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23:2225–2246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YL, Luan WJ (2012) Molecular regulatory network of flowering by photoperiod and temperature in rice. Rice Sci 19(3):169–176

    Google Scholar 

  • Song S, Wang GF, Hu Y, Liu HY, Bai XF, Qin R, Xing YZ (2018) OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J Exp Bot 69(18):4283–4293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Cao PP, Wang LJ, Chen SM, Chen FD, Jiang JF (2018) The loss of a single residue from CmFTL3 leads to the failure of florigen to flower. Plant Sci 276:99–104

    CAS  PubMed  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    CAS  PubMed  Google Scholar 

  • Taoka KI, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–338

    CAS  PubMed  Google Scholar 

  • Taoka KI, Ohki I, Tsuji H, Kojima C, Shimamoto K (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci 18(5):287–294

    CAS  PubMed  Google Scholar 

  • Xing YZ, Zhang QF (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    CAS  PubMed  Google Scholar 

  • Xue W, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    CAS  PubMed  Google Scholar 

  • Zhang D, Wilson AZ (2009) Stamen specification and anther development in rice. Chin Sci Bul 54:2342–2353

    CAS  Google Scholar 

  • Zhang DB, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Gene Geno 38:379–390

    CAS  Google Scholar 

  • Zhang Z, Hu W, Shen GJ, Liu HY, Hu Y, Zhou XC, Liu TM, Xing YZ (2017) Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci Rep 7:5388. https://doi.org/10.1038/s41598-017-05873-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng TH, Sun J, Zhou SR, Chen SH, Lu J, Cui S, Tian YL, Zhang H, Cai MH, Zhu SS, Wu MM, Wang YH, Jiang L, Zhai HQ, Wang HY, Wan JM (2019) Post-transcriptional regulation of Ghd7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice. New Phytol 224:306–320

    CAS  PubMed  Google Scholar 

  • Zhou SR, Wang Y, Li WC, Zhao ZG, Ren YL, Wang Y, Gu S, Lin Q, Wang D, Jiang L, Su N, Zhang X, Liu LL, Cheng ZJ, Lei CL, Wang JL, Guo XP, Wu FQ, Ikehashi H, Wang HY, Wan JM (2011) Pollen Semi-Sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23:111–129

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mo Wang (Fujian Agriculture and Forestry University) for writing suggestions. This research was supported by the National Nature Science Foundation of China (Grant No. 31770343), the Tianjin Natural Science Foundation of China (Grant No. 17JCYBJC30000), and the Tianjin Rice Industrial Technology System of China (Grant No. ITTRRS2018006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijiang Luan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Jin, Y., Hao, H. et al. Characterization and identification of OsFTL8 gene in rice. Plant Biotechnol Rep 14, 683–694 (2020). https://doi.org/10.1007/s11816-020-00644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00644-3

Keywords

Navigation