Skip to main content
Log in

Global analysis of differentially expressed genes between japonica and indica rice roots reveals the molecular basis for enhanced cold tolerance in japonic a rice

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Plant roots provide important support for plant growth, acquiring water and nutrients, and anchoring the plants. Rice varieties have been cultivated and improved through crossbreeding of japonica rice and indica rice varieties, which have various contrasting characteristics in important traits including root development. In this study, we performed genome-wide transcriptome analysis between Dongjin (japonica) and IR64 (indica) rice varieties to identify genes associated with important agricultural traits in rice roots. Using Agilent 44K array analysis, we isolated 564 genes from Dongjin that were significantly upregulated relative to expression in IR64 and 251 genes upregulated in IR64 compared with Dongjin. Gene ontology (GO) enrichment analysis revealed that genes related to glycine, cellular amino acid, carbohydrate metabolism, hydrogen peroxide, chitin, cell wall macromolecule catabolism, and response to oxidative stress are over-represented in Dongjin compared with IR64. Conversely, in IR64, enterobactin biosynthesis, response to oxidative stress, oxidation reduction, and metabolic process genes were upregulated. Through MapMan analysis, we determined that four ascorbate peroxidase (APX) and glutathione peroxidase (GPX)-related genes closely associated with response to oxidative stress from GO enrichment analysis were more important in the roots of Dongjin than in IR64. We further confirmed that the APX and GPX enzyme activities under cold stress were higher in Dongjin than in IR64. These results explain why the japonica cultivar is more resistant to cold stress than the indica cultivar. Our results can be used as an important basis for future studies on useful traits related to root development and abiotic stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abe N, Asai H, Yago H, Oitome NF, Itoh R, Crofts N, Nakamura Y, Fujita N (2014) Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines. BMC Plant Biol 14:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M (2014) A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol 55:897–912

    Article  CAS  PubMed  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua CB, Basu S, Pereira A, Tseng TM, Zimmer PD, Burgos NR (2015) Analysis of stress-responsive gene expression in cultivated and weedy rice differing in cold stress tolerance. PLoS One. https://doi.org/10.1371/journal.pone.0132100

    Google Scholar 

  • Cao P, Jung K-H, Choi D, Hwang D, Zhu J, Ronald PC (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J-B, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Cheng K, Lu Y, Luo J, Huang N, Lin G, Wang I (1984) Studies on the indigenous rices in Yunnan and their utilization. II. A revised classification of Asian cultivated rice. Identification in indica and japonica subspecies of Asian cultivated rice. Acta Agron Sin 4:271–280

    Google Scholar 

  • de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • Ding J, Shen J, Mao H, Xie W, Li X, Zhang Q (2012) RNA-directed DNA methylation is involved in regulating photoperiod- sensitive male sterility in rice. Mol Plant 5:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Doroshenk KA, Crofts AJ, Washida H, Satoh-Cruz M, Crofts N, Sugino A, Okita TW, Morris RT, Wyrick JJ, Fukuda M, Kumamaru T, Satoh H (2010) Characterization of the rice glup4 mutant suggests a role for the small GTPase Rab5 in the biosynthesis of carbon and nitrogen storage reserves in developing endosperm. Breed Sci 60:556–567

    Article  CAS  Google Scholar 

  • Ernst A (1994) Model systems for studying adventitious root formation. In: Davis T, Haissig B (eds) Biology of adventitious root formation. Plenum Press, New York, pp 77–86

    Chapter  Google Scholar 

  • Fukuda A, Shiratsuchi H, Fukushima A, Yamaguchi H, Mochida H, Terao T, Ogiwara H (2012) Detection of chromosomal regions affecting iron concentration in rice shoots subjected to excess ferrous iron using chromosomal segment substitution lines between japonica and indica. Plant Prod Sci 15:183–191

    Article  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156

    Article  CAS  PubMed  Google Scholar 

  • Halušková L, Valentovičová K, Huttová J, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    Article  PubMed  Google Scholar 

  • Herbette S, Le Menn A, Rousselle P, Ameglio T, Faltin Z, Branlard G, Eshdat Y, Julien JL, Drevet JR, Roeckel-Drevet P (2005) Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase. Biochim Biophys Acta 1724:108–118

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Houn T, Han MJ, Horie R, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Qin F, Huang L, Sun Q, Li C, Zhao Y, Zhou DX (2009) Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun 388:266–271

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, Tohge T, Alexander D, Guo L, Lin H, Wang J, Cui X, Rao J, Luo Q, Zhao X, Fernie AR, Zhang D (2014) Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep 4:5067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, Takano M (2011) Phytochrome-regulated EBL1 contributes to ACO1 upregulation in rice. Biotechnol Lett 33:173–178

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y, Kim M, Reuzeau C, Kim J-K (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung KH, An G (2013) Application of MapMan and RiceNet drives systematic analyses of the early heat stress transcriptome in rice seedlings. J Plant Biol 55:436–449

    Article  Google Scholar 

  • Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, Seo YS, Shultz M, Ouyang S, Yuan Q, Frank BC, Ly E, Zheng L, Jia Y, Hsia A-P, An K, Chou HH, Rocke D, Lee GC, Schnable PS, An G, Buell CR, Ronald PC (2008) Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One. https://doi.org/10.1371/journal.pone.0003337

    Google Scholar 

  • Jung K-H, Gho H-J, Giong H-K, Chandran AKN, Nguyen Q-N, Choi H, Zhang T, Wang W, Kim J-H, Choi H-K, An G (2013) Genome-wide identification and analysis of japonica and indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. Rice (N Y) 6:19

    Article  Google Scholar 

  • Kang K, Park S, Natsagdorj U, Kim YS, Back K (2011) Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves. Plant J 66:247–257

    Article  CAS  PubMed  Google Scholar 

  • Kawata S, Harada J (1975) On the development of the crown root primordia in rice plants. Jpn J Crop Sci 44:438–457

    Article  Google Scholar 

  • Konishi H, Yamane H, Maeshima M, Komatsu S (2004) Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol Biol 56:839–848

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xu W, Wei Q, Zhang Z, Xing Z, Tan L, Di C, Yao D, Wang C, Tan Y, Yan H, Ling Y, Sun C, Xue Y, Su Z (2010) Gene expression profiles deciphering rice phenotypic variation between nipponbare (japonica) and 93—11 (indica) during oxidative stress. PLoS One. https://doi.org/10.1371/journal.pone.0008632

    Google Scholar 

  • Lu Y, Song Z, Lu K, Lian X, Cai H (2012) Molecular characterization, expression and functional analysis of the amino acid transporter gene family (OsAATs) in rice. Acta Physiol Plant 34:1943–1962

    Article  CAS  Google Scholar 

  • Lu G, Wu FQ, Wu W, Wang HJ, Zheng XM, Zhang Y, Chen X, Zhou K, Jin M, Cheng Z, Li X, Jiang L, Wang H, Wan J (2014) Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant J 78:468–480

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Mackill DJ, Lei X (1997) Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci 37:1340–1346

    Article  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VNT, Moon S, Koh HJ, Nguyen QN, Yoon BS, Kim B, Koh HJ, Jung KH (2015) Genome-wide transcriptome comparison of flag leaves among japonica and indica varieties. J Plant Biol 58:333–343

    Article  CAS  Google Scholar 

  • Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genom 271:121–129

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00248

    PubMed  PubMed Central  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479

    Article  CAS  PubMed  Google Scholar 

  • Passaia G, Spagnolo Fonini L, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, de Araujo Mariath JE, Margis R, Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93–101

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X, Cheng J, Lou Y (2011) The chloroplast-localized phospholipases D alpha4 and alpha5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol 157:1987–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: An archetype for microbial iron transport. PNAS 100:3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Gantet P, Espeout S, Guiderdoni E, Périn C (2009) Molecular genetics of rice root development. Rice 2:15–34

    Article  Google Scholar 

  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  PubMed  Google Scholar 

  • Shelley IJ, Nishiuchi S, Shibata K, Inukai Y (2013) SLL1, which encodes a member of the stearoyl-acyl carrier protein fatty acid desaturase family, is involved in cell elongation in lateral roots via regulation of fatty acid content in rice. Plant Sci 207:12–17

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A, Guerta C, Gregorio G, Ikehashi H (2005) Improved mass screening of tolerance to iron toxicity in rice by lowering temperature of culture solution. J Plant Nutr 28:1481–1493

    Article  CAS  Google Scholar 

  • Shu C, Wu JH, Shi GL, Lou LQ, Deng JX, Wan JL, Cai QS (2015) Different aluminum tolerance among indica, japonica and hybrid rice varieties. Rice Sci 22:123–131

    Article  Google Scholar 

  • Sindhu A, Chintamanani S, Brandt AS, Zanis M, Scofield SR, Johal GS (2008) A guardian of grasses: specific origin and conservation of a unique disease-resistance gene in the grass lineage. Proc Natl Acad Sci USA 105:1762–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002

    Article  CAS  PubMed  Google Scholar 

  • Tseng I-C, Hong C-Y, Yu S-M, Ho T-HD (2013) Abscisic acid- and stress-induced highly proline-rich glycoproteins regulate root growth in rice. Plant Physiol 163:118–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uga Y, Ebana K, Abe J, Morita S, Okuno K, Yano M (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59:87–93

    Article  Google Scholar 

  • Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M (2009) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 57:463–472

    Article  CAS  PubMed  Google Scholar 

  • Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Bläsing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR (2006) Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol Biol 60:773–792

    Article  CAS  PubMed  Google Scholar 

  • Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408

    Article  CAS  Google Scholar 

  • Wang XK, Li RH (1997) Determination and classification of subspecies of Asian rice and their inter-subspecies hybrids. Chin Sci Bull 42:2596–2603

    Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang CH, Yu HY, Xu Q, Yu P, Yuan XP, Wang YP, Tang SX, Wei XH (2013) Comparison of Cheng’s index- and SSR marker-based classification of asian cultivated rice. Rice Sci 20:103–110

    Article  Google Scholar 

  • Xuan YH, Priatama RA, Huang J, Je BI, Liu JM, Park SJ, Piao HL, Son DY, Lee JJ, Park SH, Jung KH, Kim TH, Han CD (2013) Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. New Phytol 197:791–804

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M, Ashikari M (2010) Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Mol Genet Genom 283:305–315

    Article  CAS  Google Scholar 

  • Yamamoto E, Yonemaru J, Yamamoto T, Yano M (2012) OGRO: the overview of functionally characterized genes in rice online database. Rice 5:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Matsuoka M, Iwasaki Y, Komatsu S (2003) A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice. Plant Mol Biol 52:843–854

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Qi W, Sun F, Zha X, Chen M, Huang Y, Feng YQ, Yang J, Luo X (2013) Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2. Biotechnol Lett 35:121–128

    Article  CAS  PubMed  Google Scholar 

  • Yara A, Yaeno T, Hasegawa M, Seto H, Montillet J-L, Kusumi K, Seo S, Iba K (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of omega-3 fatty acid desaturases. Plant Cell Physiol 48:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha X, Luo X, Qian X, He G, Yang M, Li Y, Yang J (2009) Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J 7:611–620

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Huang L, Wang W, Zhao X, Zhu L, Fu B, Li Z (2012) Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genom 13:461

    Article  CAS  Google Scholar 

  • Zhang J, Luo W, Zhao Y, Xu Y, Song S, Chong K (2016) Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. New Phytol 211:1295–1310

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:1–9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Basic Science Research Program (NRF2016R1D1A1A09919568 to KHJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hong Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Number of upregulated genes between ubiquitous and flag leaves versus roots in japonica and indica (PPTX 52 KB)

11816_2017_466_MOESM2_ESM.eps

MapMan analysis for genes upregulated in japonica and indica roots using Transcription overview. Transcription overview assigned to genes upregulated in japonica (DJ, red) and indica (IR64, green) roots (a) and averaged log2 expression level of the NAC TF (LOC_Os08g40420) gene using microarray data (b) (EPS 1352 KB)

Supplementary material 3 (XLSX 111 KB)

Supplementary material 4 (XLSX 41 KB)

Supplementary material 5 (XLSX 57 KB)

Supplementary material 6 (XLSX 89 KB)

Supplementary material 7 (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, YH., Anil Kumar, N.C., Park, JC. et al. Global analysis of differentially expressed genes between japonica and indica rice roots reveals the molecular basis for enhanced cold tolerance in japonic a rice. Plant Biotechnol Rep 11, 461–473 (2017). https://doi.org/10.1007/s11816-017-0466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0466-3

Keywords