Advertisement

Plant Biotechnology Reports

, Volume 11, Issue 6, pp 449–459 | Cite as

Genomic clues to the parental origin of the wild flowering cherry Prunus yedoensis var. nudiflora (Rosaceae)

  • Ara Cho
  • Seunghoon Baek
  • Goon-Bo Kim
  • Chang-Ho Shin
  • Chan-Soo Kim
  • Kyung Choi
  • Youngje Kang
  • Hee-Ju Yu
  • Joo-Hwan Kim
  • Jeong-Hwan Mun
Original Article

Abstract

Prunus yedoensis Matsumura is one of the popular ornamental flowering cherry trees native to northeastern Asia, and its wild populations have only been found on Jeju Island, Korea. Previous studies suggested that wild P. yedoensis (P. yedoensis var. nudiflora) is a hybrid species; however, there is no solid evidence on its exact parental origin and genomic organization. In this study, we developed a total of 38 nuclear gene-based DNA markers that can be universally amplifiable in the Prunus species using 586 Prunus Conserved Orthologous Gene Set (Prunus COS). Using the Prunus COS markers, we investigated the genetic structure of wild P. yedoensis populations and evaluated the putative parental species of wild P. yedoensis. Population structure and phylogenetic analysis of 73 wild P. yedoensis accessions and 54 accessions of other Prunus species revealed that the wild P. yedoensis on Jeju Island is a natural homoploid hybrid. Sequence-level comparison of Prunus COS markers between species suggested that wild P. yedoensis might originate from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura. Moreover, approximately 81% of the wild P. yedoensis accessions examined were likely F1 hybrids, whereas the remaining 19% were backcross hybrids resulting from additional asymmetric introgression of parental genotypes. These findings suggest that complex hybridization of the Prunus species on Jeju Island can produce a range of variable hybrid offspring. Overall, this study makes a significant contribution to address issues of the origin, nomenclature, and genetic relationship of ornamental P. yedoensis.

Keywords

Prunus COS Gene-based marker Wild Prunus yedoensis Genome Homoploid hybrid 

Notes

Acknowledgements

This work was supported by grants from the Next-Generation Biogreen21 program (PJ01108601), the Korea National Arboretum (KNA1-2-13, 14 -2), and the National Institute of Forest Science, Korea (FG0802-2011-01).

Authors’ contribution

JHM conceived the projects, designed research, analyzed data, and wrote manuscript. AC performed the experiments, analyzed data, and wrote the manuscript. SB and GBK performed bioinformatics analysis and designed molecular makers. HJY and JHK analyzed data and participated in manuscript preparation. CHS, CSK, KC, and YK prepared plant samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11816_2017_465_MOESM1_ESM.docx (15.7 mb)
Supplementary material 1 (DOCX 16047 KB)
11816_2017_465_MOESM2_ESM.docx (75 kb)
Supplementary material 2 (DOCX 75 KB)

References

  1. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnold M (1997) Natural hybridization and evolution, Oxford series in ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  3. Bushakra JM, Sargent DJ, Cabrera A, Crowhurst R, Girona EL, Velasco R, Symonds VV, Knaap E, Troggio M, Gardiner SE, Chagné D (2011) Rosaceae conserved orthologous set (RosCOS) markers as a tool to assess genome synteny between Malus and Fragaria. Tree Genet Genomes 8:643–658CrossRefGoogle Scholar
  4. Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genom 10:562CrossRefGoogle Scholar
  5. Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755CrossRefPubMedGoogle Scholar
  6. Cho M, Kim C, Kim S, Kim T, Heo K, Jun J, Kim S (2014) Molecular and morphological data reveal hybrid origin of wild Prunus yedoensis (Rosaceae) from Jeju Island, Korea: implications for the origin of the flowering cherry. Am J Bot 101:1976–1986CrossRefPubMedGoogle Scholar
  7. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  8. Genovart M (2009) Natural hybridization and conservation. Biodivers Conserv 18:1435–1439CrossRefGoogle Scholar
  9. Harn C, Kim Y, Yang S, Chung H (1977) Studies on the origin of Prunus yedoensis Matsumura. I. A comparative electrophoretic study on wild P. subhirtella in Mt. Hanla, cultivated P. yedoensis and P. donarium. Kor J Bot 20:1–5Google Scholar
  10. Jeong Y-M, Chung W-H, Chung H, Kim N, Park B-S, Lim K-B, Yu H-J, Mun J-H (2014) Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica. Theor Appl Genet 127:1975–1989CrossRefPubMedGoogle Scholar
  11. Jung Y-H, Oh M-Y (2005) Phylogenetic relationships of Prunus (Rosaceae) in Korea and Japan inferred from chloroplast DNA sequences. Kor J Genet 27:279–288Google Scholar
  12. Jung Y, Ko M, Oh Y, Kim G, Chung Y, Kim M, Oh M (1997) Phylogenetic relationship among selected taxa of Prunus in Mt. Halla and cultivated Prunus yedoensis by the RAPD analysis. Korean J Plant Taxon 27:415–428Google Scholar
  13. Jung Y, Ko M, Oh Y, Han S, Kim M, Koh S, Oh M (1998) Genetic relationship of Prunus yedoensis, native and cultivated, based on internal transcribed spacer sequences of ribosomal DNA. Korean J Genet 20:109–116Google Scholar
  14. Kalendar R, Lee D, Schulman A (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116:271–302CrossRefPubMedGoogle Scholar
  15. Knight R (1969) Abstract bibliography of fruit breeding and genetics to 1965; Prunus. Commonwealth Agricultural Bureaux, Farnham RoyalGoogle Scholar
  16. Koehne VE (1912) 95 Prunus yedoensis var. nudiflora, nov. var. Von E. Koehne. Repert Specierum Nov Regni Veg 10:507Google Scholar
  17. Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  19. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  20. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  21. Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng G, Cullis C, Findlay S, Ritland CE, Bohlmann J, Ritland K (2008) Identification of COS markers in the Pinaceae. Tree Genet Genomes 5:247–255CrossRefGoogle Scholar
  22. Matsumoto D, Tao R (2016) Distinct self-recognition in the Prunus S-RNase-based gametophytic self-incompatibility system. Hort J 85:289–305CrossRefGoogle Scholar
  23. Park S, Kim M, Lee S, Sim K (1984) A palynological study of some Prunus in Mt. Halla. Kor J Plant Taxon 14:153–159Google Scholar
  24. Potter D, Eriksson T, Evans R, Oh S, Smedmark J, Morgan D, Kerr M, Robertson K, Arsenault M, Dickinson T, Campbell C (2007) Phylogeny and classification of Rosaceae. Pl Syst Evol 266:5–43CrossRefGoogle Scholar
  25. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  26. Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genom 9:473–484CrossRefGoogle Scholar
  27. Renaut S, Rowe H, Ungerer M, Rieseberg L (2014) Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers. Philos Trans R Soc Lond B Biol Sci 369:20130345CrossRefPubMedPubMedCentralGoogle Scholar
  28. Roh M, Cheong E, Choi I-Y, Young Y (2007) Characterization of wild Prunus yedoensis analyzed by inter-simple sequence repeat and chloroplast DNA. Sci Hortic 114:121–128CrossRefGoogle Scholar
  29. Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55:1069–1079CrossRefPubMedGoogle Scholar
  30. Soltis P, Soltis D (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588CrossRefPubMedGoogle Scholar
  31. Takenaka Y (1963) The origin of the Yoshino cherry tree. J Hered 54:207–211CrossRefGoogle Scholar
  32. The International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRefGoogle Scholar
  33. Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Rieseberg L, Michelmore R, Kesseli R (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173:2227–2235CrossRefPubMedPubMedCentralGoogle Scholar
  34. Vilà M, Weber E, Antonio C (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217CrossRefGoogle Scholar
  35. Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation. Am Nat 169:383–397PubMedGoogle Scholar
  36. Wilson E (1916) The cherries of Japan. Univ Press, CambridgeGoogle Scholar
  37. Wu F, Eannetta NT, Xu Y, Tanksley SD (2009) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935CrossRefPubMedGoogle Scholar
  38. Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mume. Nat Commun 3:1318CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Ara Cho
    • 1
  • Seunghoon Baek
    • 1
  • Goon-Bo Kim
    • 1
  • Chang-Ho Shin
    • 2
  • Chan-Soo Kim
    • 3
  • Kyung Choi
    • 2
  • Youngje Kang
    • 3
  • Hee-Ju Yu
    • 4
  • Joo-Hwan Kim
    • 5
  • Jeong-Hwan Mun
    • 1
  1. 1.Department of Bioscience and BioinformaticsMyongji UniversityYonginSouth Korea
  2. 2.Korea National ArboretumPocheonSouth Korea
  3. 3.Warm Temperate and Subtropical Forest Research CenterNational Institute of Forest ScienceJejuSouth Korea
  4. 4.Department of Life ScienceThe Catholic University of KoreaBucheonSouth Korea
  5. 5.Department of Life ScienceGachon UniversitySeongnamSouth Korea

Personalised recommendations