Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases

Abstract

Genome editing (also known as targeted mutation) has promise for molecular breeding. Compared with the CRISPR/Cas9 system, the transcription activator-like effector nucleases (TALENs) have likely a lesser off-target rate in genome editing. Both a rapid test system for the functionality of designed TALENs and an effective delivery system for introducing the TALENs to plants are critical for successful target mutation. TALENs have usually been tested in protoplasts or introduced to plants with viral vectors. However, plant regeneration from protoplast culture can generate extensive somatic variation. Viral vectors are not always available, and plants edited by these vectors usually require virus elimination. Here, we used a non-viral, Agrobacterium-mediated transient expression approach, to serve both rapid test and effective delivery of TALENs into two vegetatively propagated potato cultivars, Solanum tuberosum Russet Burbank and Shepody. Two TALENs with different molecular weights (22 and 27 aa-repeat modules) were expressed to target two endogenous genes (starch branching enzyme and an acid invertase) by Agrobacterium-mediated infiltration (agroinfiltration) into leaves of potato plants. The infiltrated leaf DNA was analyzed using restriction site loss assay and subsequent DNA sequencing. Deep sequencing of these tetraploid cultivars was also conducted to determine the zygosity at the targeted chromosomal loci. TALENs, with different molecular weights, successfully agroinfiltrated and induced mutations at both targeted loci.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bhaskar PB, Venkateshwaran M, Wu L, Ané JM, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 4:e5812

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    CAS  Article  PubMed  Google Scholar 

  4. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  Article  PubMed  Google Scholar 

  5. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    CAS  Article  PubMed  Google Scholar 

  6. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    CAS  Article  PubMed  Google Scholar 

  7. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583

    CAS  Article  PubMed  Google Scholar 

  9. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:756–761

    Article  Google Scholar 

  10. Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes Genomes, Genet 3:1697–1705

    Google Scholar 

  11. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  PubMed  Google Scholar 

  12. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed  PubMed Central  Google Scholar 

  13. De Lange O, Binder A, Lahaye T (2014) From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J 78:753–771

    Article  PubMed  Google Scholar 

  14. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Fichtner F, Urrea Castellanos R, Ülker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921–939

    CAS  Article  PubMed  Google Scholar 

  17. Guo JL, Yu CL, Fan CY, Lu QN, Yin JM, Zhang YF, Yang Q (2010) Cloning and characterization of a potato TFL1 gene involved in tuberization regulation. Plant Cell Tissue Organ Cult 103:103–109

    CAS  Article  Google Scholar 

  18. Halpin C, Cooke SE, Barakate A, El Amrani A, Ryan MD (1999) Self-processing 2A-polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J 17:453–459

    CAS  Article  PubMed  Google Scholar 

  19. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–1140

    CAS  Article  PubMed  Google Scholar 

  20. Higgins VJ, Lu H, Xing T, Gelli A, Blumwald E (1998) The gene-for-gene concept and beyond: interactions and signals. Can J Plant Pathol 20:150–157

    CAS  Article  Google Scholar 

  21. Hofgen R, Willmitzer L (1988) Storage of competent cells for agrobacterium transformation. Nucleic Acids Res 16:9877

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  Article  PubMed  Google Scholar 

  23. Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  Article  PubMed  Google Scholar 

  24. Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12:37–43

    CAS  Article  PubMed  Google Scholar 

  25. Khoshnoodi J, Blennow A, Ek B, Rask L, Larsson H (1996) The multiple forms of starch-branching enzyme I in Solanum tuberosum. Eur J Biochem 242:148–155

    CAS  Article  PubMed  Google Scholar 

  26. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Li X-Q, Chetrit P, Mathieu C, Vedel F, De Paepe R, Remy R, Ambard-Bretteville F (1988a) Regeneration of cytoplasmic male sterile protoclones of Nicotiana sylvestris with mitochondrial variations. Curr Genet 13:261–266

    CAS  Article  Google Scholar 

  29. Li X-Q, Prat D, De Paepe R, Pernes J (1988b) Variability induced in Nicotiana sylvestris by two successive cycles of protoplast culture. In: IRRIaA Sinica (ed) Genetic manipulation in crops. Cassell Tycooly, London, pp 131–133

    Google Scholar 

  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JSM, Zhu JK, Mahfouz MM (2012a) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78:407–416

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012b) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    CAS  Article  PubMed  Google Scholar 

  33. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Zhang C, Ou Y, Lin Y, Song B, Xie C, Liu J, Li X-Q (2011) Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics 286:109–118

    CAS  Article  PubMed  Google Scholar 

  35. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40:W622–W627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    CAS  Article  PubMed  Google Scholar 

  40. Nassar AMK, Abdulnour J, Leclerc Y, Li X-Q, Donnelly DJ (2011) Intraclonal selection for improved processing of NB “Russet Burbank” potato. Am J Potato Res 88:387–397

    Article  Google Scholar 

  41. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    CAS  Article  PubMed  Google Scholar 

  42. Nicolia A, Proux-Wéra E, Åhman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    CAS  Article  PubMed  Google Scholar 

  43. Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    CAS  Article  PubMed  Google Scholar 

  44. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013) Rapid and efficient gene modification in rice and brachypodium using TALENs. Mol Plant 6:1365–1368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595

    CAS  Article  PubMed  Google Scholar 

  46. Sun Z, Li N, Huang G, Xu J, Pan Y, Wang Z, Tang Q, Song M, Wang X (2013) Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea. J Integr Plant Biol 55:1092–1103

    CAS  Article  PubMed  Google Scholar 

  47. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:1–6

    Article  Google Scholar 

  48. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015a) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    CAS  Article  PubMed  Google Scholar 

  49. Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin RJ, Yee JK (2015b) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33:175–179

    CAS  Article  PubMed  Google Scholar 

  50. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285

    CAS  Article  PubMed  Google Scholar 

  51. Xiang H, Li X-Q (2015) Development of TBSPG pipelines for refining unique mapping and repetitive sequence detection using the two halves of each Illumina sequence read. Plant Mol Biol Rep 34:172–181

    Article  Google Scholar 

  52. Xing T, Laroche A (2011) Revealing plant defense signaling getting more sophisticated with phosphoproteomics. Plant Signal Behav 6:1469–1474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang F, Maeder ML, Unger-Wallaced E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Muhammad Haroon, Agriculture and Agri-Food Canada, for his general support in the laboratory and his technical support in plant and DNA preparation. The research funding was from Agriculture and Agri-Food Canada A-base, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the deep sequencing was supported by the New Brunswick Agricultural Innovation Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiu-Qing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 358 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xiang, H., Donnelly, D.J. et al. Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol Rep 11, 249–258 (2017). https://doi.org/10.1007/s11816-017-0448-5

Download citation

Keywords

  • Non-transgenic
  • Agroinfiltration
  • Site-specific mutagenesis
  • Polyploid plants
  • Allele specificity
  • Vegetatively propagated plants
  • Somatic genome manipulation
  • Molecular breeding