Plant Biotechnology Reports

, Volume 11, Issue 5, pp 249–258 | Cite as

Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases

  • Jin Ma
  • Heng Xiang
  • Danielle J. Donnelly
  • Fan-Rui Meng
  • Huimin Xu
  • Dion Durnford
  • Xiu-Qing LiEmail author
Original Article


Genome editing (also known as targeted mutation) has promise for molecular breeding. Compared with the CRISPR/Cas9 system, the transcription activator-like effector nucleases (TALENs) have likely a lesser off-target rate in genome editing. Both a rapid test system for the functionality of designed TALENs and an effective delivery system for introducing the TALENs to plants are critical for successful target mutation. TALENs have usually been tested in protoplasts or introduced to plants with viral vectors. However, plant regeneration from protoplast culture can generate extensive somatic variation. Viral vectors are not always available, and plants edited by these vectors usually require virus elimination. Here, we used a non-viral, Agrobacterium-mediated transient expression approach, to serve both rapid test and effective delivery of TALENs into two vegetatively propagated potato cultivars, Solanum tuberosum Russet Burbank and Shepody. Two TALENs with different molecular weights (22 and 27 aa-repeat modules) were expressed to target two endogenous genes (starch branching enzyme and an acid invertase) by Agrobacterium-mediated infiltration (agroinfiltration) into leaves of potato plants. The infiltrated leaf DNA was analyzed using restriction site loss assay and subsequent DNA sequencing. Deep sequencing of these tetraploid cultivars was also conducted to determine the zygosity at the targeted chromosomal loci. TALENs, with different molecular weights, successfully agroinfiltrated and induced mutations at both targeted loci.


Non-transgenic Agroinfiltration Site-specific mutagenesis Polyploid plants Allele specificity Vegetatively propagated plants Somatic genome manipulation Molecular breeding 



We thank Muhammad Haroon, Agriculture and Agri-Food Canada, for his general support in the laboratory and his technical support in plant and DNA preparation. The research funding was from Agriculture and Agri-Food Canada A-base, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the deep sequencing was supported by the New Brunswick Agricultural Innovation Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11816_2017_448_MOESM1_ESM.pdf (358 kb)
Supplementary material 1 (PDF 358 kb)


  1. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhaskar PB, Venkateshwaran M, Wu L, Ané JM, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 4:e5812CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436CrossRefPubMedGoogle Scholar
  4. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512CrossRefPubMedGoogle Scholar
  5. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRefPubMedGoogle Scholar
  6. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439CrossRefPubMedGoogle Scholar
  7. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583CrossRefPubMedGoogle Scholar
  9. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:756–761CrossRefGoogle Scholar
  10. Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes Genomes, Genet 3:1697–1705Google Scholar
  11. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176CrossRefPubMedGoogle Scholar
  12. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968CrossRefPubMedPubMedCentralGoogle Scholar
  13. De Lange O, Binder A, Lahaye T (2014) From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J 78:753–771CrossRefPubMedGoogle Scholar
  14. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fichtner F, Urrea Castellanos R, Ülker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921–939CrossRefPubMedGoogle Scholar
  17. Guo JL, Yu CL, Fan CY, Lu QN, Yin JM, Zhang YF, Yang Q (2010) Cloning and characterization of a potato TFL1 gene involved in tuberization regulation. Plant Cell Tissue Organ Cult 103:103–109CrossRefGoogle Scholar
  18. Halpin C, Cooke SE, Barakate A, El Amrani A, Ryan MD (1999) Self-processing 2A-polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J 17:453–459CrossRefPubMedGoogle Scholar
  19. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–1140CrossRefPubMedGoogle Scholar
  20. Higgins VJ, Lu H, Xing T, Gelli A, Blumwald E (1998) The gene-for-gene concept and beyond: interactions and signals. Can J Plant Pathol 20:150–157CrossRefGoogle Scholar
  21. Hofgen R, Willmitzer L (1988) Storage of competent cells for agrobacterium transformation. Nucleic Acids Res 16:9877CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  23. Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  24. Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12:37–43CrossRefPubMedGoogle Scholar
  25. Khoshnoodi J, Blennow A, Ek B, Rask L, Larsson H (1996) The multiple forms of starch-branching enzyme I in Solanum tuberosum. Eur J Biochem 242:148–155CrossRefPubMedGoogle Scholar
  26. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li X-Q, Chetrit P, Mathieu C, Vedel F, De Paepe R, Remy R, Ambard-Bretteville F (1988a) Regeneration of cytoplasmic male sterile protoclones of Nicotiana sylvestris with mitochondrial variations. Curr Genet 13:261–266CrossRefGoogle Scholar
  29. Li X-Q, Prat D, De Paepe R, Pernes J (1988b) Variability induced in Nicotiana sylvestris by two successive cycles of protoplast culture. In: IRRIaA Sinica (ed) Genetic manipulation in crops. Cassell Tycooly, London, pp 131–133Google Scholar
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JSM, Zhu JK, Mahfouz MM (2012a) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78:407–416CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012b) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392CrossRefPubMedGoogle Scholar
  33. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liu X, Zhang C, Ou Y, Lin Y, Song B, Xie C, Liu J, Li X-Q (2011) Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics 286:109–118CrossRefPubMedGoogle Scholar
  35. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40:W622–W627CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719CrossRefPubMedPubMedCentralGoogle Scholar
  38. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087CrossRefPubMedPubMedCentralGoogle Scholar
  39. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501CrossRefPubMedGoogle Scholar
  40. Nassar AMK, Abdulnour J, Leclerc Y, Li X-Q, Donnelly DJ (2011) Intraclonal selection for improved processing of NB “Russet Burbank” potato. Am J Potato Res 88:387–397CrossRefGoogle Scholar
  41. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693CrossRefPubMedGoogle Scholar
  42. Nicolia A, Proux-Wéra E, Åhman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24CrossRefPubMedGoogle Scholar
  43. Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741CrossRefPubMedGoogle Scholar
  44. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013) Rapid and efficient gene modification in rice and brachypodium using TALENs. Mol Plant 6:1365–1368CrossRefPubMedPubMedCentralGoogle Scholar
  45. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595CrossRefPubMedGoogle Scholar
  46. Sun Z, Li N, Huang G, Xu J, Pan Y, Wang Z, Tang Q, Song M, Wang X (2013) Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea. J Integr Plant Biol 55:1092–1103CrossRefPubMedGoogle Scholar
  47. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:1–6CrossRefGoogle Scholar
  48. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015a) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476CrossRefPubMedGoogle Scholar
  49. Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin RJ, Yee JK (2015b) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33:175–179CrossRefPubMedGoogle Scholar
  50. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285CrossRefPubMedGoogle Scholar
  51. Xiang H, Li X-Q (2015) Development of TBSPG pipelines for refining unique mapping and repetitive sequence detection using the two halves of each Illumina sequence read. Plant Mol Biol Rep 34:172–181CrossRefGoogle Scholar
  52. Xing T, Laroche A (2011) Revealing plant defense signaling getting more sophisticated with phosphoproteomics. Plant Signal Behav 6:1469–1474CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang F, Maeder ML, Unger-Wallaced E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27CrossRefPubMedGoogle Scholar

Copyright information

© UKCrown: Agriculture and Agri-Food Canada; Her Majesty the Queen in Right of Canada 2017

Authors and Affiliations

  • Jin Ma
    • 1
    • 2
  • Heng Xiang
    • 1
    • 3
  • Danielle J. Donnelly
    • 4
  • Fan-Rui Meng
    • 2
  • Huimin Xu
    • 5
  • Dion Durnford
    • 6
  • Xiu-Qing Li
    • 1
    Email author
  1. 1.Fredericton Research and Development CentreAgriculture and Agri-Food CanadaFrederictonCanada
  2. 2.Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
  3. 3.College of Animal Science and TechnologySouthwest UniversityBeibeiChina
  4. 4.Plant Science DepartmentMcGill UniversitySte Anne de BellevueCanada
  5. 5.Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownCanada
  6. 6.Department of BiologyUniversity of New BrunswickFrederictonCanada

Personalised recommendations