Skip to main content

Advertisement

Log in

A soybean plastidic ATP/ADP transporter gene, GmAATP, is involved in carbohydrate metabolism in transgenic Arabidopsis

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The plastidic ATP/ADP transporter (AATP) imports adenosine triphosphate (ATP) from the cytosol into plastids, resulting in the increase of the ATP supply to facilitate anabolic synthesis in heterotrophic plastids of dicotyledonous plants. The regulatory role of GmAATP from soybean in increasing starch accumulation has not been investigated. In this study, a gene encoding the AATP protein, named GmAATP, was successfully isolated from soybean. Transient expression of GmAATP in Arabidopsis protoplasts and Nicotiana benthamiana leaf epidermal cells revealed the plastidic localization of GmAATP. Its expression was induced by exogenous sucrose treatment in soybean. The coding region of GmAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of GmAATP significantly increased the sucrose and starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III, and AtSSS IV), and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS, and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild type (WT). These findings suggest that GmAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis. All these results suggest that GmAATP could be used as a candidate gene for developing high starch-accumulating plants as alternative energy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Blennow A, Jensen SL, Shaik SS, Skryhan K, Carciofi M, Holm PB, Hebelstrup KH, Tanackovic V (2013) Future cereal starch bioengineering cereal ancestors encounter gene technology and designer enzymes. Cereal Chem 90:274–287

    Article  CAS  Google Scholar 

  • Burton RA, Jenner H, Carrangis L, Fahy B, Fincher GB, Hylton C, Laurie DA, Parker M, Waite D, Wegen SV, Verhoeven T, Denyer K (2002) Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J 31:97–112

    Article  CAS  PubMed  Google Scholar 

  • Bustos R, Fahy B, Hylton CM, Seale R, Nebane NM, Edwards A, Martin C, Smith AM (2004) Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers. PNAS 101:2215–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delvallé D, Dumez S, Wattebled F, Roldán I, Planchot V, Berbezy P, Colonna P, Vyas D, Chatterjee M, Ball S, Mérida A, D’Hulst C (2005) Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Plant J 43:398–412

    Article  PubMed  Google Scholar 

  • Emes MJ, Neuhaus HE (1997) Metabolism and transport in non-photosynthetic plastids. J Exp Bot 48:1995–2005

    CAS  Google Scholar 

  • Fiore C, Trézéguet V, Saux AL, Roux P, Schwimmer C, Dianoux AC, Noel F, Lauquin GJM, Brandolin G, Vignais PV (1998) The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80:137–150

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geigenberger P, Hajirezaei M, Geiger M, Deiting U, Sonnewald U, Stitt M (1998) Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205:428–437

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Stamme C, Tjaden J, Schulz A, Quick PW, Betsche T, Kersting HJ, Neuhaus HE (2001) Tuber physiology and properties of starch from tubers of transgenic potato plants with altered plastidic adenylate transporter activity. Plant Physiol 125:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison CJ, Mould RM, Leech MJ, Johnson SA, Turner L, Schreck SL, Baird KM, Jack PL, Rawsthorne S, Hedley CL, Wang TL (2000) The rug3 locus of pea encodes plastidial phosphoglucomutase. Plant Physiol 122:1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heldt HW (1969) Adenine nucleotide translocation in spinach chloroplasts. FEBS Lett 5:11–14

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Zhai H, Wang FB, Yang NK, Wang B, He SZ, Liu QC (2013) Cloning and characterization of a carbohydrate metabolism-associated gene IbSnRK1 from sweetpotato. Sci Hortic 158:22–32

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Biol 47:509–540

    Article  CAS  Google Scholar 

  • Li X, Ma H, Huang H, Li D, Yao S (2013) Natural anthocyanins from phytoresources and their chemical researches. Nat Prod Res 27:456–469

    Article  CAS  PubMed  Google Scholar 

  • Linka N, Hurka H, Lang BF, Burger G, Winkler HH, Stamme C, Urbany C, Seil I, Kusch J, Neuhaus HE (2003) Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 306:27–35

    Article  CAS  PubMed  Google Scholar 

  • Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng K, Chang TJ, Liu X, Chen SB, Wang YQ, Sun AJ, Xu HL, Wei XL, Zhu Z (2005) Cloning and expression pattern of a gene encoding a putative plastidic ATP/ADP transporter from Helianthus tuberosus L. J Integr Plant Biol 47:1123–1132

    Article  CAS  Google Scholar 

  • Möhlmann T, Tjaden J, Schwöppe C, Winkler HH, Kampfenkel K, Neuhaus HE (1998) Occurrence of two plastidic ATP/ADP transporters in Arabidopsis thaliana L-molecular characterization and comparative structural analysis of similar ATP/ADP translocators from plastids and Rickettsia prowazekii. Eur J Biochem 252:353–359

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura Y, Yuki K, Park SY, Ohya T (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol 30:833–839

    Article  CAS  Google Scholar 

  • Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA (2014) Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol 15:145–160

    Article  CAS  PubMed  Google Scholar 

  • Regierer B, Fernie AR, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Reiser J, Linka N, Lemke L, Jeblick W, Neuhaus HE (2004) Molecular physiological analysis of two plastidic ATP/ADP transporters from Arabidopsis. Plant Physiol 136:3524–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan I, Wattebled F, Lucas MM, Delvalle D, Planchot V, Jimenez S, Perez R, Ball S, D’Hulst C, Merida A (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Barrio R, Corral-Martinez P, Ancin M, Segui-Simarro JM, Farran I (2013) Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11:618–627

    Article  CAS  PubMed  Google Scholar 

  • Schünemann D, Borchert S, Flügge UI, Heldt HW (1993) ADP/ATP translocator from pea root plastids-comparison with translocators from spinach chloroplasts and pea leaf mitochondria. Plant Physiol 103:131–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Skryhan K, Cuesta-Seijo JA, Nielsen MM, Marri L, Mellor SB, Glaring MA, Jensen PE, Palcic MM, Blennow A (2015) The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1. PLoS One 10:e0136997

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Strasser R, Bondili JS, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L (2007) Enzymatic properties and subcellular localization of Arabidopsis β-N-acetylhexosaminidases. Plant Physiol 145:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldan I, Montero M, Munoz FJ, Ovecka M, Bahaji A, Planchot V, Pozueta-Romero J, D’Hulst C, Merida A (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase. Plant Cell 21:2443–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjaden J, Möhlmann T, Kampfenkel K, Henrichs G, Neuhaus HE (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J 16:531–540

    Article  CAS  Google Scholar 

  • Wang SJ, Yeh KW, Tsai CY (2001) Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Sci 161:635–644

    Article  CAS  Google Scholar 

  • Wang FB, Guo XT, Qiao XQ, Zhang J, Yu CY, Sheng YT, Zhu LY, Cheng JS, Liang MX, Su HY, Cheng XH, Zhang HX (2016a) The maize plastidic thioredoxin F-type gene ZmTrxF increases starch accumulation in transgenic Arabidopsis. Sci Hortic 210:205–212

    Article  CAS  Google Scholar 

  • Wang FB, Kong WL, Fu YR, Sun XC, Chen XH, Zhou Q (2016b) Constitutive expression of SlTrxF increases starch content in transgenic Arabidopsis. Biol Plant. doi:10.1007/s10535-016-0675-6

    Google Scholar 

  • Wang FB, Kong WL, Wong G, Fu LF, Peng RH, Li ZJ, Yao QH (2016c) AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Genet Genom 291:1545–1559

    Article  CAS  Google Scholar 

  • Wang FB, Ye YX, Niu Y, Wan FX, Qi B, Chen XH, Zhou Q, Chen BQ (2016d) A tomato plastidic ATP/ADP transporter gene SlAATP increases starch content in transgenic Arabidopsis. Physiol Mol Biol Plants 22:497–506

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Li Y, Zhang H, Zhai H, Liu QC, He SH (2016e) A plastidic ATP/ADP transporter gene, IbAATP, increases starch and amylose content and alters starch structure in transgenic sweetpotato. J Integr Agr 15:1968–1982

    Article  CAS  Google Scholar 

  • Wang FB, Fu LF, Kong WL, Ye YX, Chen XH, Zhou Q, Chen BQ (2017a) Constitutive expression of StAATP, a potato plastidic ATP/ADP transporter gene, increases starch content in transgenic Arabidopsis. Biotechnol Biotec Eq. doi:10.1080/13102818.2017.1282837

    Google Scholar 

  • Wang FB, Kong WL, Niu Y, Ye YX, Fan S, Wang YJ, Chen XH, Zhou Q (2017b) StTrxF, a potato plastidic thioredoxin F-type protein gene, is involved in starch accumulation in transgenic Arabidopsis thaliana. Biotechnol Biotec Eq. doi:10.1080/13102818.2017.1302360

    Google Scholar 

  • Winkler HH, Neuhaus HE (1999) Non-mitochondrial ATP transport. Trends Biochem Sci 24:64–68

    Article  CAS  PubMed  Google Scholar 

  • Yuen CYL, Leelapon O, Chanvivattana Y, Warakanont J, Narangajavana J (2009) Molecular characterization of two genes encoding plastidic ATP/ADP transport proteins in cassava. Biol Plant 53:37–44

    Article  CAS  Google Scholar 

  • Zhang YJ (1977) Assays of glucose, fructose, sucrose and starch in fruits and vegetables with the anthrone method. Chin J Anal Chem 5:167–171

    Google Scholar 

  • Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Project of Talent Introduction of Huaiyin Institute of Technology (Z301B16534), the Natural Science Foundation of Jiangsu Province of China (BK2013256), and the National Spark Plan Project of China (2014GA69002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feibing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Chen, X., Zhang, F. et al. A soybean plastidic ATP/ADP transporter gene, GmAATP, is involved in carbohydrate metabolism in transgenic Arabidopsis . Plant Biotechnol Rep 11, 135–146 (2017). https://doi.org/10.1007/s11816-017-0438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0438-7

Keywords

Navigation