Skip to main content
Log in

A purine-type heat shock protein 90 inhibitor promotes the heat shock response in Arabidopsis

Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Geldanamycin is a macrocyclic heat shock protein 90 (HSP90) inhibitor that suppresses cancer cell proliferation. Since geldanamycin also promotes the heat shock response (HSR) in cells, this compound is used as a chemical inducer of the HSR in Arabidopsis. Although many types of HSP90 inhibitors that are different from the macrocyclic types have been developed in pharmaceutical research, non-macrocyclic HSP90 inhibitors have not been investigated in terms of whether they can induce the HSR in plants. Here, we determined the HSR-inducing activities in Arabidopsis of 10 non-macrocyclic HSP90 inhibitors including 2 benzamide derivatives, 3 purine derivatives, and 5 resorcinol derivatives. Among the tested inhibitors, PU-H71, which is a purine derivative, showed the highest HSR-inducing activity. The activity of PU-H71 was significantly higher than that of geldanamycin. The application of PU-H71 induced the HSR in all Arabidopsis seedlings. The HSP17.6C-CI and HSP70 proteins accumulated after the treatment with PU-H71. The seedlings treated with PU-H71 maintained more chlorophyll than the control seedlings after the heat stress. These results suggest that the purine-derivative HSP90 inhibitor PU-H71 enhanced the heat tolerance of Arabidopsis by promoting the HSR in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blagg BS, Kerr TD (2006) Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 26:310–338

    Article  CAS  PubMed  Google Scholar 

  • Clément M, Leonhardt N, Droillard MJ, Reiter I, Montillet JL, Genty B, Laurière C, Nussaume L, Noël LD (2011) The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant Physiol 156:1481–1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:e358–e369

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Kurita I (2014) The natural alkaloid sanguinarine promotes the expression of heat shock protein genes in Arabidopsis. Acta Physiol Plant 36:3337–3343

    Article  CAS  Google Scholar 

  • Hara M, Harazaki A, Tabata K (2013) Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 69:71–77

    Article  CAS  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids—measurement and characterization by UV-VIS. Current protocols in food analytical chemistry (CPFA), (Supplement 1), Wiley, New York, pp F4.3.1–F4.3.8

  • McLellan CA, Turbyville TJ, Wijeratne EM, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AA (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Saidi Y, Finka A, Chakhporanian M, Zrÿd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59:697–711

    Article  CAS  PubMed  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ 30:753–763

    Article  CAS  PubMed  Google Scholar 

  • Samakovli D, Margaritopoulou T, Prassinos C, Milioni D, Hatzopoulos P (2014) Brassinosteroid nuclear signaling recruits HSP90 activity. New Phytol 203:743–757

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Trendowski M (2015) PU-H71: an improvement on nature’s solutions to oncogenic Hsp90 addiction. Pharmacol Res 99:202–216

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Yamada K, Nishimura M (2008) Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal Behav 3:660–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y (2015) Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep 26:8030

    Article  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332

    Article  CAS  PubMed  Google Scholar 

  • Zhang XC, Millet YA, Cheng Z, Bush J, Ausubel FM (2015) Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat Plants 1:15049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by A-STEP, Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Hara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murano, H., Matsubara, T., Takahashi, I. et al. A purine-type heat shock protein 90 inhibitor promotes the heat shock response in Arabidopsis . Plant Biotechnol Rep 11, 107–113 (2017). https://doi.org/10.1007/s11816-017-0435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-017-0435-x

Keywords

Navigation