Advertisement

Plant Biotechnology Reports

, Volume 11, Issue 2, pp 71–86 | Cite as

Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data

Review Article

Abstract

Reconstruction of gene co-expression networks is a powerful tool for better understanding of gene function, biological processes, and complex disease mechanisms. In essence, co-expression network analysis has been widely used for understanding which genes are highly co-expressed through special biological processes or differentially expressed in various conditions. Development of high-throughput experiments has provided a large amount of genomic and transcriptomic data for model and non-model organisms. The availability of genome-wide expression data has led to the development of in silico procedures for reconstruction of gene co-expression networks. Gene co-expression networks predict unknown genes’ functions; moreover, it has been successfully applied to understand important biological processes of living organisms such as plants. In this survey, we have reviewed the algorithms, databases, and tools of gene co-expression network reconstruction, which can lead to new landscapes for further research activities. Furthermore, we explain an application of some algorithms, databases, and tools that can significantly boost our current understanding of co-expression networks in Arabidopsis thaliana as a model plant using publicly available data. The presented example shows that using co-expression networks is an efficient way to detect genes, which may involve in various critical biological processes such as defense response.

Keywords

Functional genomics Gene network Gene co-expression network Network reconstruction algorithm Transcriptomic data Co-expressed genes 

Notes

Acknowledgement

PK is supported by School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abbas OA (2008) Comparisons between data clustering algorithms. Int Arab J Inf Technol 5(3):320–325Google Scholar
  2. Allen JD, Xie Y et al (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7(1):e29348. doi: 10.1371/journal.pone.0029348 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aoki Y, Okamura Y et al (2015) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57(1):pcv165Google Scholar
  4. Asai T, Tena G et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. doi: 10.1038/415977a PubMedCrossRefGoogle Scholar
  5. Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. doi: 10.1038/75556 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Assenov Y, Ramírez F et al (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284PubMedCrossRefGoogle Scholar
  7. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1CrossRefGoogle Scholar
  8. Ballouz S, Verleyen W et al (2015) Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics 31(13):2123–2130PubMedCrossRefGoogle Scholar
  9. Bansal M, Belcastro V et al (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3(1):78PubMedPubMedCentralGoogle Scholar
  10. Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:418–429Google Scholar
  11. Cai J, Chen G et al (2010) ClusterViz: a Cytoscape plugin for graph clustering and visualization. School of Information Science and Engineering, Central South University, Changsha, p 1Google Scholar
  12. Carter SL, Brechbuhler CM et al (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250. doi: 10.1093/bioinformatics/bth234 PubMedCrossRefGoogle Scholar
  13. Chae L, Lee I et al (2012) Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15(2):177–184. doi: 10.1016/j.pbi.2012.01.006 PubMedCrossRefGoogle Scholar
  14. Chavez Montes RA, Coello G et al (2014) ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol 14:97. doi: 10.1186/1471-2229-14-97 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen N, del Val IJ et al (2012) Metabolic network reconstruction: advances in in silico interpretation of analytical information. Curr Opin Biotechnol 23(1):77–82PubMedCrossRefGoogle Scholar
  16. Chen HY, Hsieh EJ et al (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New phytol 211(2):599–613. doi: 10.1111/nph.13914 PubMedCrossRefGoogle Scholar
  17. Cheong R, Hoffmann A et al (2008) Understanding NF-κB signaling via mathematical modeling. Mol Syst Biol 4(1):192PubMedPubMedCentralGoogle Scholar
  18. Christensen C, Thakar J et al (2007) Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. Syst Biol IET 1(2):61–77CrossRefGoogle Scholar
  19. Clarke C, Doolan P et al (2012) CGCDB: a web-based resource for the investigation of gene coexpression in CHO cell culture. Biotechnol Bioeng 109(6):1368–1370PubMedCrossRefGoogle Scholar
  20. D’haeseleer P, Liang S et al (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726PubMedCrossRefGoogle Scholar
  21. De Bodt S, Hollunder J et al (2012) CORNET 2.0: integrating plant coexpression, protein–protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195(3):707–720PubMedCrossRefGoogle Scholar
  22. Deihimi T, Niazi A et al (2012) Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed genes and promoter architecture-case study: dual roles of thaumatin like proteins in biotic and abiotic stresses. SpringerPlus 1:30. doi: 10.1186/2193-1801-1-30 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dimitrakopoulos GN, Maraziotis IA et al (2014) A clustering based method accelerating gene regulatory network reconstruction. In: Procedia Computer Science, vol 29, pp 1993–2002. doi: 10.1016/j.procs.2014.05.183
  24. Ditt RF, Kerr KF et al (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interactions MPMI 19(6):665–681. doi: 10.1094/MPMI-19-0665 CrossRefGoogle Scholar
  25. Du D, Rawat N et al (2015) Construction of citrus gene coexpression networks from microarray data using random matrix theory. Hortic Res 2:15026PubMedPubMedCentralGoogle Scholar
  26. Emamjomeh A, Goliaei B et al (2015) Prediction of gene co-expression by quantifying heterogeneous features. Curr Bioinform 10(4):414–424CrossRefGoogle Scholar
  27. Faccioli P, Provero P et al (2005) From single genes to co-expression networks: extracting knowledge from barley functional genomics. Plant Mol Biol 58(5):739–750. doi: 10.1007/s11103-005-8159-7 PubMedCrossRefGoogle Scholar
  28. Faith JJ, Hayete B et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feltus FA, Ficklin SP et al (2013) Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Syst Biol 7(1):1CrossRefGoogle Scholar
  30. Fiorilli V, Catoni M et al (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184(4):975–987. doi: 10.1111/j.1469-8137.2009.03031.x PubMedCrossRefGoogle Scholar
  31. Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi: 10.1038/35888 PubMedCrossRefGoogle Scholar
  32. Floratos A, Smith K et al (2010) geWorkbench: an open source platform for integrative genomics. Bioinformatics 26(14):1779–1780PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fridborg I, Williams A et al (2004) Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. Mol Plant Microbe Interactions MPMI 17(10):1086–1094. doi: 10.1094/MPMI.2004.17.10.1086 CrossRefGoogle Scholar
  34. Frohlich H, Praveen P et al (2011) Fast and efficient dynamic nested effects models. Bioinformatics 27(2):238–244. doi: 10.1093/bioinformatics/btq631 PubMedCrossRefGoogle Scholar
  35. Fukushima A, Nishizawa T et al (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol 158(4):1487–1502PubMedPubMedCentralCrossRefGoogle Scholar
  36. Giorgi FM, Del Fabbro C et al (2013) Comparative study of RNA-seq-and microarray-derived coexpression networks in Arabidopsis thaliana. Bioinformatics 29(6):717–724PubMedCrossRefGoogle Scholar
  37. Hamada K, Hongo K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229PubMedCrossRefGoogle Scholar
  38. Hansen BO, Vaid N et al (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394. doi: 10.3389/fpls.2014.00394 PubMedPubMedCentralCrossRefGoogle Scholar
  39. He D, Liu Z-P et al (2012) Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J Mol Cell Biol 4(3):140–152PubMedCrossRefGoogle Scholar
  40. Hong S, Chen X et al (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res 41(8):e95–e96PubMedPubMedCentralCrossRefGoogle Scholar
  41. Huang S, Ingber DE (2006) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54PubMedCrossRefGoogle Scholar
  42. Hwang W, Cho Y-R et al (2006) A novel functional module detection algorithm for protein–protein interaction networks. Algorithms Mol Biol 1(1):1CrossRefGoogle Scholar
  43. Iancu OD, Kawane S et al (2012) Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 28(12):1592–1597. doi: 10.1093/bioinformatics/bts245 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, vol 159. GMD-Forschungszentrum Informationstechnik, p 48Google Scholar
  45. Jupiter D, Chen H et al (2009) STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data. BMC Bioinform 10(1):332CrossRefGoogle Scholar
  46. Khosravi P, Gazestani V et al (2015) Comparative analysis of co-expression networks reveals molecular changes during the cancer progression. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 June 2015, Toronto, Springer, pp 1481–1487Google Scholar
  47. Kim KC, Lai Z et al (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371. doi: 10.1105/tpc.107.055566 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Knapp B, Kaderali L (2013) Reconstruction of cellular signal transduction networks using perturbation assays and linear programming. PLoS One 8(7):e69220. doi: 10.1371/journal.pone.0069220 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kommadath A, Bao H et al (2014) Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding. BMC Genom 15(1):452CrossRefGoogle Scholar
  50. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):559CrossRefGoogle Scholar
  51. Lee HK, Hsu AK et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lee T-H, Kim Y-K et al (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151(1):16–33PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lehtinen S, Marsellach FX et al (2013) Stress induces remodelling of yeast interaction and co-expression networks. Mol BioSyst 9(7):1697–1707PubMedCrossRefGoogle Scholar
  54. Lemay DG, Martin WF et al (2012) G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes. BMC Bioinform 13(1):253CrossRefGoogle Scholar
  55. Lerman JA, Hyduke DR et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929PubMedCrossRefGoogle Scholar
  56. Li J, Wei H et al (2013) DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis. BioMed Res Int. doi: 10.1155/2013/856325 Google Scholar
  57. Liang Y-H, Cai B et al (2014) Construction and validation of a gene co-expression network in grapevine (Vitis vinifera. L.). Hortic Res 1:14040PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lim CJ, Yang KA et al (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119(4):373–383PubMedCrossRefGoogle Scholar
  59. Lin W-D, Liao Y-Y et al (2011) Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. doi: 10.1104/pp.110.166520 Google Scholar
  60. Linderman GC, Patel VN et al (2011) BiC: a web server for calculating bimodality of coexpression between gene and protein networks. Bioinformatics 27(8):1174–1175PubMedPubMedCentralCrossRefGoogle Scholar
  61. Linderman GC, Chance MR et al (2012) MAGNET: MicroArray Gene expression and Network Evaluation Toolkit. Nucleic Acids Res 40(W1):W152–W156PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu Z-P (2015) Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics 16(1):3–22PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liu B-H, Yu H et al (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26(20):2637–2638PubMedPubMedCentralCrossRefGoogle Scholar
  64. López-Kleine L, Leal L et al (2013) Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Func Genom 12(5):457–467CrossRefGoogle Scholar
  65. Luscombe NM, Babu MM et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312. doi: 10.1038/nature02782 PubMedCrossRefGoogle Scholar
  66. Lysenko A, Defoin-Platel M et al (2011) Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinform 12(1):203CrossRefGoogle Scholar
  67. Maere S, Heymans K et al (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449PubMedCrossRefGoogle Scholar
  68. Maffei G, Miozzi L et al (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24(3):179–186. doi: 10.1007/s00572-013-0527-6 PubMedCrossRefGoogle Scholar
  69. Mal C, Aftabudddin M et al (2014) No3CoGP: non-conserved and conserved coexpressed gene pairs. BMC Res Notes 7(1):886PubMedPubMedCentralCrossRefGoogle Scholar
  70. Manfield IW, Jen C-H et al (2006) Arabidopsis co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34(suppl 2):W504–W509PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mao L, Van Hemert JL et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinform 10(1):346CrossRefGoogle Scholar
  72. Marbach D, Costello JC et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804PubMedPubMedCentralCrossRefGoogle Scholar
  73. Margolin AA, Nemenman I et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7CrossRefGoogle Scholar
  74. Markowetz F, Spang R (2007) Inferring cellular networks—a review. BMC Bioinform 8(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5 CrossRefGoogle Scholar
  75. Mentzen WI, Wurtele ES (2008) Regulon organization of Arabidopsis. BMC Plant Biol 8(1):99PubMedPubMedCentralCrossRefGoogle Scholar
  76. Michalopoulos I, Pavlopoulos GA et al (2012) Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes. BMC Res Notes 5(1):265PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mochida K, Uehara-Yamaguchi Y et al (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52(5):785–803PubMedPubMedCentralCrossRefGoogle Scholar
  78. Molendijk AJ, Ruperti B et al (2008) A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53(6):909–923. doi: 10.1111/j.1365-313X.2007.03384.x PubMedCrossRefGoogle Scholar
  79. Montojo J, Zuberi K et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153PubMedPubMedCentralGoogle Scholar
  80. Movahedi S, Van Bel M et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798PubMedCrossRefGoogle Scholar
  81. Mutwil M, Øbro J et al (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res 36(suppl 2):W320–W326PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mutwil M, Usadel B et al (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152(1):29–43. doi: 10.1104/pp.109.145318 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Myers CL, Robson D et al (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6(13):R114. doi: 10.1186/gb-2005-6-13-r114 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nepusz T, Yu H et al (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472. doi: 10.1038/nmeth.1938 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Netotea S, Sundell D et al (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genom 15(1):106CrossRefGoogle Scholar
  86. Obayashi T, Kinoshita K (2010) COXPRESdb: a database to compare gene coexpression in seven model animals. Nucleic Acids Res 39:D1016–D1022PubMedPubMedCentralCrossRefGoogle Scholar
  87. Obayashi T, Kinoshita K et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35(suppl 1):D863–D869PubMedCrossRefGoogle Scholar
  88. Obayashi T, Hayashi S et al (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res 36(suppl 1):D77–D82PubMedGoogle Scholar
  89. Obayashi T, Hayashi S et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37(suppl 1):D987–D991PubMedCrossRefGoogle Scholar
  90. Obayashi T, Nishida K et al (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol 52(2):213–219PubMedPubMedCentralCrossRefGoogle Scholar
  91. Obayashi T, Okamura Y et al (2013) COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals. Nucleic Acids Res 41(D1):D1014–D1020PubMedCrossRefGoogle Scholar
  92. Obayashi T, Okamura Y et al (2014) ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55(1):e6–e7PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ogata Y, Suzuki H et al (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26(9):1267–1268PubMedCrossRefGoogle Scholar
  94. Oh IS, Park AR et al (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847. doi: 10.1105/tpc.105.034819 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Okamura Y, Aoki Y et al (2014) COXPRESdb in 2015: coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems. Nucleic Acids Res 43:D82–D86PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pan Y, Pylatuik JD et al (2004) Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining. J Bioinform Comput Biol 2(04):639–655PubMedCrossRefGoogle Scholar
  97. Peng H, Long F et al (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238CrossRefGoogle Scholar
  98. Prifti E, Zucker J-D et al (2010) Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics 26(24):3083–3089PubMedCrossRefGoogle Scholar
  99. Proost S, Mutwil M (2016) Tools of the trade: studying molecular networks in plants. Curr Opin Plant Biol 30:143–150. doi: 10.1016/j.pbi.2016.02.010 PubMedCrossRefGoogle Scholar
  100. Reshef DN, Reshef YA et al (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524PubMedPubMedCentralCrossRefGoogle Scholar
  101. Reverter A, Chan EK (2008) Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21):2491–2497PubMedCrossRefGoogle Scholar
  102. Richard H, Schulz MH et al (2010) Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res 38(10):e112–e113PubMedPubMedCentralCrossRefGoogle Scholar
  103. Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16(9):1139–1149. doi: 10.1101/gad.222702 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rotival M, Petretto E (2014) Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Func Genom 13(1):66–78CrossRefGoogle Scholar
  105. Roy S, Bhattacharyya DK et al (2014) Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform 15(Suppl 7):S10CrossRefGoogle Scholar
  106. Ruan J, Dean AK et al (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4:8. doi: 10.1186/1752-0509-4-8 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ryan PT, Ó’Maoiléidigh DS et al (2015) Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation. BMC Genom 16(1):488CrossRefGoogle Scholar
  108. Sait K (2009) The prediction of local modular structures in a co-expression network based on gene expression data sets. Genome Inform 23:117–127Google Scholar
  109. Sarkar NK, Kim Y-K et al (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84(1–2):125–143PubMedCrossRefGoogle Scholar
  110. Serin EA, Nijveen H et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. doi: 10.3389/fpls.2016.00444 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  112. Skinner J, Kotliarov Y et al (2011) Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinform 12(1):286CrossRefGoogle Scholar
  113. Smyth GK (2005) Limma: linear models for microarray data Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420CrossRefGoogle Scholar
  114. Song L, Langfelder P et al (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13:328. doi: 10.1186/1471-2105-13-328 CrossRefGoogle Scholar
  115. Srinivasasainagendra V, Page GP et al (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147(3):1004–1016PubMedPubMedCentralCrossRefGoogle Scholar
  116. Steinhauser D, Usadel B et al (2004) CSB. DB: a comprehensive systems-biology database. Bioinformatics 20(18):3647–3651PubMedCrossRefGoogle Scholar
  117. Steuer R, Kurths J et al (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl 2):S231–S240PubMedCrossRefGoogle Scholar
  118. Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi: 10.1126/science.1087447 PubMedCrossRefGoogle Scholar
  119. Troyanskaya OG, Dolinski K et al (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100(14):8348–8353. doi: 10.1073/pnas.0832373100 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tsaparas P, Marino-Ramirez L et al (2006) Global similarity and local divergence in human and mouse gene co-expression networks. BMC Evol Biol 6:70. doi: 10.1186/1471-2148-6-70 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tzfadia O, Diels T et al (2015) CoExpNetViz: comparative co-expression networks construction and visualization tool. Front Plant Sci. doi: 10.3389/fpls.2015.01194 PubMedGoogle Scholar
  122. Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164PubMedCrossRefGoogle Scholar
  123. Usadel B, Obayashi T et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651. doi: 10.1111/j.1365-3040.2009.02040.x PubMedCrossRefGoogle Scholar
  124. van Dam S, Craig T et al (2015) GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res 43(D1):D1124–D1132PubMedCrossRefGoogle Scholar
  125. van Delft J, Gaj S et al (2012) RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo [a] pyrene. Toxicol Sci 130(2):427–439PubMedCrossRefGoogle Scholar
  126. van Noort V, Snel B et al (2004) The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 5(3):280–284. doi: 10.1038/sj.embor.7400090 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang YR, Huang H (2014) Review on statistical methods for gene network reconstruction using expression data. J Theor Biol 362:53–61PubMedCrossRefGoogle Scholar
  128. Wang S, Yin Y et al (2012a) Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol 12(1):138PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wang Y, Joseph SJ et al (2012b) SNPxGE2: a database for human SNP–coexpression associations. Bioinformatics 28(3):403–410PubMedCrossRefGoogle Scholar
  130. Wang P, Qi H et al (2014) ImmuCo: a database of gene co-expression in immune cells. Nucleic Acids Res 43:D1133–D1139PubMedPubMedCentralCrossRefGoogle Scholar
  131. Willmann R, Lajunen HM et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108(49):19824–19829. doi: 10.1073/pnas.1112862108 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wolf DM, Lenburg ME et al (2014) Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS One 9(2):e88309. doi: 10.1371/journal.pone.0088309 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wolfe CJ, Kohane IS et al (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinform 6:227. doi: 10.1186/1471-2105-6-227 CrossRefGoogle Scholar
  134. Wong DC, Sweetman C et al (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genom 14(1):882CrossRefGoogle Scholar
  135. Wu C-C, Huang H-C et al (2004) GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18):3691–3693PubMedCrossRefGoogle Scholar
  136. Xiong J, Lu X et al (2011) Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci Chin Life Sci 54(1):65–67CrossRefGoogle Scholar
  137. Xiong J, Lu Y et al (2013) Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database 2013:bat008PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yalamanchili HK, Li Z et al (2014) SpliceNet: recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples. Nucleic Acids Res 42(15):e121PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yim WC, Yu Y et al (2013) PLANEX: the plant co-expression database. BMC Plant Biol 13(1):83PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhang L, Yu S et al (2012) Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One 7(5):e33748PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang J, Liu W et al (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129–136PubMedCrossRefGoogle Scholar
  142. Zhao J-L, Pan J-S et al (2015) Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics 105(5):296–303PubMedCrossRefGoogle Scholar
  143. Zheng X, Xue C et al (2015) Identification of crucial genes in intracranial aneurysm based on weighted gene coexpression network analysis. Cancer Gene Ther 22(5):238–245PubMedCrossRefGoogle Scholar
  144. Zhou X, Kao M-CJ et al (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci 99(20):12783–12788PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhu X, Gerstein M et al (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024. doi: 10.1101/gad.1528707 PubMedCrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer Japan 2017

Authors and Affiliations

  1. 1.Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of AgricultureUniversity of ZabolZabolIran
  2. 2.Department of Plant Breeding and Biotechnology (PBB), Faculty of AgricultureUniversity of ZabolZabolIran
  3. 3.Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  4. 4.School of Biological SciencesInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations