Skip to main content
Log in

Ectopic expression of NtEF1 and NtEF2 promotes flowering and alters floral organ identity in Nicotiana tabacum

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

A previous study revealed that IbEF1 from sweet potato promoted early flowering in transgenic tobacco and acted as a novel regulator involved in flowering time control. Two putative ortholog genes were found in N. tabacum: NtEF1 and NtEF2. Subcellular localization of NtEF1 and NtEF2 with an in vivo targeting approach revealed that NtEF1 and NtEF2 were correctly targeted to the cytosol in protoplasts when expressed as a green fluorescent fusion protein (GFP). NtEF1 and NtEF2 are not thought to act as transcription factors. In this study, the expression of NtEF2 was compared with that of NtEF1 in the apical buds of N. tabacum of various ages. NtEF2 was only detected in open flowers that were 100 days old, whereas NtEF1 was expressed in apical buds of 60-, 70-, 80-, 90- and 100-day-old plants. NtEF1 was expressed in all floral organs, although its level of expression varied in sepals, petals, stamens and carpels. In contrast, NtEF2 mRNA expression was only detected in the sepals. Transgenic tobacco plants overexpressing NtEF1 and NtEF2 were generated to elucidate the physiological function of NtEF1 and NtEF2. The 35S::NtEF1 and 35S::NtEF2 transgenic lines showed early-flowering phenotypes. Moreover, the constitutive expression of NtEF1 and NtEF2 occasionally engendered an abnormal morphological alteration of anthers. It is assumed that there are only a few differential flowering regulations occurring in tobacco compared to Arabidopsis, indicating that NtEF1 and NtEF2 interfere with the flowering time and floral development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP1:

APETALA1

FUL:

FRUITFULL

LFY:

LEAFY

FT:

FLOWERING LOCUS T

AGL20:

AGAMOUS-LIKE20

SOC1:

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1

SEP:

SEPALLATA

CaMV35S:

Cauliflower Mosaic Virus 35S

CTAB:

Cetyl trimethylammonium

RACE:

Rapid amplification of cDNA ends

PCR:

Polymerase chain reaction

ORF:

Open reading frame

NAA:

1-Naphthaleneacetic acid

BAP:

Benzylaminopurine

HPT:

Hygromycin B phosphotransferase

GFP:

Green fluorescent protein

sGFP:

Synthetic green fluorescent protein

smGFP:

Soluble-modified green fluorescent protein

SAM:

Shoot apical meristem

IM:

Inflorescence meristem

SPLs:

SQUAMOSA PROMOTER BINDING LIKEs

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Adam H, Ouellet F, Kane NA, Agharbaoui Z, Major G, Tominaga Y, Sarhan F (2007) Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development. Plant Cell Physiol 8:1192–1206

    Article  Google Scholar 

  • Ahearn KP, Jonhnson HA, Weigel D, Wagner DR (2001) NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol 42(10):1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energy Rev 15:584–593

    Article  CAS  Google Scholar 

  • Al-Ahmad H, Gressel J (2005) Transgene containment using cytokinin-reversible male sterility in constitutive, gibberellic acid-insensitive (Δgai) transgenic tobacco. J Plant Growth Regul 24:19–27

    Article  CAS  Google Scholar 

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63–68

    Article  CAS  PubMed  Google Scholar 

  • Avinish A, Subramaniam D, Murugesan A (2014) Bio-diesel-A global scenario. Renew Sust Energy Rev 29:517–527

    Article  Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueno F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. (Lond.) 100:659–676

    Article  Google Scholar 

  • Blazquez M, Soowal L, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    CAS  PubMed  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleißner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000a) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    CAS  PubMed  Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000b) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141(550–550):e2

    Google Scholar 

  • Glover B (2007) Understanding Flowers and Flowering: An integrated Approach, first ed. Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, pp.83-94

  • Huala E, Sussex I (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901–913

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the invlovement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jack T (2001) Plant development going MADS. Plant Mol Biol 46:515–520

    Article  CAS  PubMed  Google Scholar 

  • Jang S, An K, Lee S, An G (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 42:230–238

    Article  Google Scholar 

  • Kang SG, Jin JB, Piao HL, Pih KT, Jang HJ, Lim JH, Hwang I (1998) Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol Biol 38:437–447

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  • Kelly A, Zagotta MT, White RA, Chang C, Meeks-Wagner DR (1995) NFL, the tobacco homolog of Floricaula and Leafy, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 2:1201–1224

    Google Scholar 

  • Kim KW (2008) Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy. Micron 39:976–984

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Hamada T (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam Biotech Lett 27:1841–1845

    Article  CAS  Google Scholar 

  • Kim SH, Song WK, Kim YH, Kwon SY, Lee HS, Lee IC, Kwak SS (2009) Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweet potato. BMB reports 42(5):271–276

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Seo SG, Jun BK, Lee Y, Jeon SB, Choe J, Kim JB, Kim ST, Kim SH (2011) An IbEF1 from sweet potato promotes flowering in transgenic tobacco. Gens Genom 33:335–341

    Article  CAS  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62:807–816

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim SH, Jung YH, Kim JA, Lee MO, Choi PG, Choi W, Kim KN, Jwa NS (2005) Molecular cloning and functional analysis of rice (Oryza sativa L.) OsNDR1 on defense signaling pathway. Plant Pathol J 21:149–157

    Article  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky M (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Mandel T, Fleming AJ, Kra¨henbu¨hl R, Kuhlemeier C (1995) Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model. Plant Mol Biol 29:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brwon C, Pelaz S, Yanofsky M, Amasino R (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14(Suppl. S):S111–S130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinheimer R, Kellogg E (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21:2591–2605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sablowsky R (2007) Flowering and determinacy in Arabidopsis. J Exp Bot 58(5):899–907

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, third ed. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 6.39-6.46

  • Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781

    Article  PubMed Central  PubMed  Google Scholar 

  • Schultz EA, Haughn GW (1993) Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119:745–765

    CAS  Google Scholar 

  • Simson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of Flowering Time? Science 296:285–289

    Article  Google Scholar 

  • Smykal P, Gennen J, Bodt SD, Ranganath V, Melzer S (2007) Flowering of strict photoperiodic Nicotiana varieties in non-induction conditions by transgenic approaches. Plant Mol Biol 65:233–242

    Article  CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Teper-Bamnolker P, Samach A (2005) The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17:2661–2675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101:1775–1780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Ito T, Wellmer F, Meyerowitz EM (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet 36:157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Institute of Planning and Evaluation for Technology (IPET) funded by Ministry for Food, Agriculture, Forestry and Fisheries (311048-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hyung Kim.

Additional information

J. M. Shin and S.-G. Seo are the first authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J.M., Seo, SG., Kim, JS. et al. Ectopic expression of NtEF1 and NtEF2 promotes flowering and alters floral organ identity in Nicotiana tabacum . Plant Biotechnol Rep 9, 11–26 (2015). https://doi.org/10.1007/s11816-014-0336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0336-1

Keywords

Navigation