Skip to main content
Log in

A single cupredoxin azurin production in transplastomic tobacco

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The single-copper protein azurin from Pseudomonas aeruginosa has attracted great interest as an anti-cancer therapeutic agent or as a fuel cell catalyst for energy conversion. In this work, we obtained transgenic tobacco plants transformed with the chloroplast expression vector harboring the mature azurin polypeptide fused to psbA 5′UTR element, confirmed the integration of site-specificity into the tobacco chloroplast genome through homologous recombination by Southern hybridization analysis, and also identified the maternal inheritance. Northern hybridization analysis showed the polycistronic transcription expression pattern of the azurin gene. In addition, post-transcriptional processing of azurin monocistron was observed, which may be due to the endonucleolytic and intercistronic cleavage of the psbA mRNA 5′UTR element. Also, we examined the azurin expression levels depending on leaf maturity, showing a high expression level of 5.7 % of total soluble protein (TSP) in young leaves, in contrast to a low expression level of 0.72 % TSP in fully mature leaves. In addition, the copper level of transplastomic chloroplasts increased by twofold compared with that of non-transplastomic chloroplasts. These results suggest that the increased copper level may be due to the production of azurin in transplastomic chloroplasts, representing the formation of active azurin with copper ions in active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adman ET (1991) Copper protein structures. Adv Protein Chem 42:145–197

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson RHA, Nordling M, Lundberg LG (1989) The azurin gene from Pseudomonas aeruginosa: cloning and characterization. Eur J Biochem 179:195–200

    Article  CAS  PubMed  Google Scholar 

  • Barta A, Sommengruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM (1986) The expression of a nopaline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    Article  CAS  PubMed  Google Scholar 

  • Birch-Machin I, Newell C, Hibbered J, Gray J (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2001) Transgenic chloroplasts in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Ruiz G, Denes B, Sandberg L, Langridge W (2009) Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-I in transgenic chloroplasts and evaluation of structural identify and function. BMC Biotechnol 9:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Day A, Ellis THN (1984) Chloroplast DNA deletions associated with wheat plants regenerated from pollen: possible basis for maternal inheritance of chloroplasts. Cell 39:359–368

    Article  CAS  PubMed  Google Scholar 

  • Ebil C, Zou Z, Kim M, Mullet J, Koop H (1999) In vivo analysis of plastid psbA, rbcL, and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  CAS  PubMed  Google Scholar 

  • Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701

    Article  CAS  PubMed  Google Scholar 

  • Kang TJ, Yang MS (2004) Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants. BMC Biotechnol 4:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Klaff P (1995) mRNA decay in spinach chloroplasts: psbA mRNA degradation is initiated by endonucleolytic cleavages within the coding region. Nucleic Acids Res 23:4885–4892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall NM, Garner DK, Wilson TD, Gao YG, Robinson H, Nilges MJ, Lu Y (2009) Rationally tuning the reduction potential of a single cupredoxin beyond the natural range. Nature 462:113–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monde RA, Greene JC, Stern DB (2000) The sequence and secondary structure of the 3′ UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 4:529–542

    Article  Google Scholar 

  • Ortigosa SM, Fernandez-San Millan A, Veramendi J (2010) Stable production of peptide antigens in transgenic tobacco chloroplasts by fusion to the p53 tetramerisation domain. Transgenic Res 19:703–709

    Article  CAS  PubMed  Google Scholar 

  • Pozdnyakova I, Wittung-Stafshede P (2001) Copper binding before polypeptide folding speeds up formation of active (holo) Pseudomonas aeruginosa azurin. Biochemistry 40:13728–13733

    Article  CAS  PubMed  Google Scholar 

  • Punj V, Bhattacharyya S, Saint-Dic D, Vasu C, Cunningham EA, Graves J, Yamada T, Constantinou AI, Christov K, White B, Li G, Majumda D, Chakrabarty AM, Das Gupta TK (2004) Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 23:2367–2378

    Article  CAS  PubMed  Google Scholar 

  • Roh KH, Shin KS, Lee YH, Seo SC, Park HG, Daniell H, Lee SB (2006) Accumulation of sweet protein monellin is regulated by the psbA 5′ UTR in tobacco chloroplasts. J Plant Biol 49:34–43

    Article  CAS  Google Scholar 

  • Rowan BA, Bendich AJ (2009) The loss of DNA from chloroplasts as leaves mature: fact or artefact? J Exp Bot 60:3005–3010

    Article  CAS  PubMed  Google Scholar 

  • Sodmergen Kawano S, Tano S, Kuroiwa T (1991) Degradation of chloroplast DNA in second leaves of rice (Oryza sativa) before leaf yellowing. Protoplasma 160:89–98

    Article  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  PubMed  Google Scholar 

  • Van de Kamp M, Silvestrini MC, Burunori M, van Beeumen J, Hali FC, Canters GW (1990) Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem 194:109–118

    Article  PubMed  Google Scholar 

  • Wittung-Stafshede P, Hill MG, Gomez E, Bilio AD, Karlsson G, Leckner J, Winkler HB, Gray HB, Malmstrom BG (1998) Reduction potentials of blue and purple copper proteins in their unfolded states: a closer look at rack-induced coordination. J Biol Inorg Chem 3:367–370

    Article  CAS  Google Scholar 

  • Yamada T, Goto M, Punji V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Das Gupta TK, Chakrabarty AM (2002) Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci USA 99:14098–14103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoschke R, Liere K, Börner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Ebil C, Koop HU (2003) The stem-loop region of the tobacco psbA 3′UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269:340–349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was carried out with the support of Research Program for Agricultural Science and Technology Development (Project No. PJ010075), National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Bum Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, K.H., Choi, S.B., Kwak, BK. et al. A single cupredoxin azurin production in transplastomic tobacco. Plant Biotechnol Rep 8, 421–429 (2014). https://doi.org/10.1007/s11816-014-0333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0333-4

Keywords

Navigation