Skip to main content

Advertisement

Log in

Glycoengineering in plants for the development of N-glycan structures compatible with biopharmaceuticals

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Plants and plant cells are emerging as promising alternatives for biopharmaceutical production with improved safety and efficiency. Plant cells are capable of performing post-translational modifications (PTMs) similar to those of mammalian cells and are safer than mammalian cells with regard to contamination by infectious pathogens, including animal viruses. However, a major obstacle to producing biopharmaceuticals in plants lies in the fact that plant-derived N-glycans include plant-specific sugar residues such as β1,2-xylose and α1,3-fucose attached to a pentasaccharide core (Man3GlcNAc2) as well as β1,3-galactose and α1,4-fucose involved in Lewis a (Lea) epitope formation that can evoke allergic responses in the human body. In addition, sugar residues such as α1,6-fucose, β1,4-galactose and α2,6-sialic acid, which are thought to play important roles in the activity, transport, delivery and half-life of biopharmaceuticals are absent among the N-glycans naturally found in plants. In order to take advantage of plant cells as a system in which to produce biopharmaceuticals development of plants producing N-glycan structures compatible with biopharmaceuticals is necessary. In this article we summarize the current state of biopharmaceutical production using plants as well as what is known about N-glycosylation processes occurring in the endoplasmic reticulum and Golgi apparatus in plants. Finally, we propose and discuss a strategy for and the associated technical barriers of producing customized N-glycans via removal of enzyme genes that add plant-specific sugar residues and introducing enzyme genes that add sugar residues absent in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalberse RC, Koshte V, Clemens JG (1981) Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and Hymenoptera venom. J Allergy Clin Immunol 68:356–364

    PubMed  CAS  Google Scholar 

  • Aebi M, Gassenhuber J, Domdey H, te Heesen S (1996) Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6:439–444

    PubMed  CAS  Google Scholar 

  • Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142:99–115

    PubMed  CAS  Google Scholar 

  • Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, Stoger E (2013) Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol Biol 83:105–117

    PubMed  CAS  Google Scholar 

  • Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, Liberman Y, Freeman A, Zimran A, Galun E (2009) A plant-derived recombinant human glucocerebrosidase enzyme—a preclinical and phase I investigation. PLoS ONE 4:e4792

    PubMed  PubMed Central  Google Scholar 

  • Ballou L, Ballou C (1995) Schizosaccharomyces pombe mutants that are defective in glycoprotein galactosylation. Proc Natl Acad Sci USA 92:2790–2794

    PubMed  CAS  PubMed Central  Google Scholar 

  • Balsari AL, Morelli D, Menard S, Veronesi U, Colnaghi MI (1994) Protection against doxorubicin-induced alopecia in rats by liposome-entrapped monoclonal antibodies. FASEB J 8:226–230

    PubMed  CAS  Google Scholar 

  • Bardor M, Faveeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 13:427–434

    PubMed  CAS  Google Scholar 

  • Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM (1986) The expression of a nopaline synthase—human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1992) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. 1983. Biotechnology 24:367–370

    PubMed  CAS  Google Scholar 

  • Boisson M, Gomord V, Audran C, Berger N, Dubreucq B, Granier F, Lerouge P, Faye L, Caboche M, Lepiniec L (2001) arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J 20:1010–1019

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bor MV, Fedosov SN, Laursen NB, Nexø E (2003) Recombinant human intrinsic factor expressed in plants is suitable for use in measurement of vitamin B12. Clin Chem 49:2081–2083

    PubMed  CAS  Google Scholar 

  • Bosch D, Schots A (2010) Plant glycans: friend or foe in vaccine development? Expert Rev Vaccines 9:835–842

    PubMed  CAS  Google Scholar 

  • Burda P, Aebi M (1998) The ALG10 locus of Saccharomyces cerevisiae encodes the alpha-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. Glycobiology 8:455–462

    PubMed  CAS  Google Scholar 

  • Burda P, Jakob CA, Beinhauer J, Hegemann JH, Aebi M (1999) Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology 9:617–625

    PubMed  CAS  Google Scholar 

  • Burda P, te Heesen S, Brachat A, Wach A, Dusterhoft A, Aebi M (1996) Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: identification of the ALG9 gene encoding a putative mannosyl transferase. Proc Natl Acad Sci USA 93:7160–7165

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burn JE, Hurley UA, Birch RJ, Arioli T, Cork A, Williamson RE (2002) The cellulose-deficient arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J 32:949–960

    PubMed  CAS  Google Scholar 

  • Campistol JM, Esforzado N, Martinez J, Rosello L, Veciana L, Modol J, Casellas J, Pons M, de Las Cuevas X, Piera J, Oliva JA, Costa J, Barrera JM, Bruguera M (1999) Efficacy and tolerance of interferon-alpha(2b) in the treatment of chronic hepatitis C virus infection in haemodialysis patients. Pre- and post-renal transplantation assessment. Nephrol Dial Transplant 14:2704–2709

    PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castilho A, Pabst M, Leonard R, Veit C, Altmann F, Mach L, Glossl J, Strasser R, Steinkellner H (2008) Construction of a functional CMP-sialic acid biosynthesis pathway in arabidopsis. Plant Physiol 147:331–339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castilho A, Strasser R, Stadlmann J, Grass J, Jez J, Gattinger P, Kunert R, Quendler H, Pabst M, Leonard R, Altmann F, Steinkellner H (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castro O, Movsichoff F, Parodi AJ (2006) Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proc Natl Acad Sci USA 103:14756–14760

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chojnacki T, Dallner G (1988) The biological role of dolichol. Biochem J 251:1–9

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colussi PA, Taron CH, Mack JC, Orlean P (1997) Human and Saccharomyces cerevisiae dolichol phosphate mannose synthases represent two classes of the enzyme, but both function in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 94:7873–7878

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    PubMed  CAS  Google Scholar 

  • Cramer CL, Weissenborn DL, Oishi KK, Grabau EA, Bennett S, Ponce E, Grabowski GA, Radin DN (1996) Bioproduction of human enzymes in transgenic tobacco. Ann N Y Acad Sci 792:62–71

    PubMed  CAS  Google Scholar 

  • D’Agostaro GA, Zingoni A, Moritz RL, Simpson RJ, Schachter H, Bendiak B (1995) Molecular cloning and expression of cDNA encoding the rat UDP-N-acetylglucosamine:alpha-6-d-mannoside beta-1,2-N-acetylglucosaminyltransferase II. J Biol Chem 270:15211–15221

    PubMed  Google Scholar 

  • D’Aoust M, Couture MM, Charland N, Trépanier S, Landry N, Ors F, Vézina L (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619

    PubMed  Google Scholar 

  • D’Aoust MA, Lavoie PO, Couture MMJ, Trépanier S, Guay JM, Dargis M, Mongrand S, Landry N, Ward BJ, Vézina LP (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940

    PubMed  Google Scholar 

  • De Leede LGJ, Humphries JE, Bechet AC, Van Hoogdalem EJ, Verrijk R, Spencer DG (2008) Novel controlled-release Lemna-derived IFN-α2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial. J Interferon Cytokine Res 28:113–122

    PubMed  Google Scholar 

  • De Neve M, De Loose M, Jacobs A, Van Houdt H, Kaluza B, Weidle U, Van Montagu M, Depicker A (1993) Assembly of an antibody and its derived antibody fragment in Nicotiana and arabidopsis. Transgenic Res 2:227–237

    PubMed  Google Scholar 

  • De Wilde C, Peeters K, Jacobs A, Peck I, Depicker A (2002) Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol Breed 9:271–282

    Google Scholar 

  • Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141:578–586

    PubMed  CAS  PubMed Central  Google Scholar 

  • Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Bettendorff P, Braun D, Herrmann T, Fiorito F, Jelesarov I, Guntert P, Helenius A, Wuthrich K (2002) NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J Mol Biol 322:773–784

    PubMed  CAS  Google Scholar 

  • Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami-Hand C, Wuerth JP, Cerami A, Brines M (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA 100:6741–6746

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fanata WI, Lee KH, Son BH, Yoo JY, Harmoko R, Ko KS, Ramasamy NK, Kim KH, Oh DB, Jung HS, Kim JY, Lee SY, Lee KO (2013) N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. Plant J 73:966–979

    PubMed  CAS  Google Scholar 

  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778

    PubMed  CAS  Google Scholar 

  • Fedosov SN, Laursen NB, Nexø E, Moestrup SK, Petersen TE, Jensen EØ, Berglund L (2003) Human intrinsic factor expressed in the plant arabidopsis thaliana. Eur J Biochem 270:3362–3367

    PubMed  CAS  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299 (discussion 277)

    PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gallois P, Makishima T, Hecht V, Despres B, Laudie M, Nishimoto T, Cooke R (1997) An arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J 11:1325–1331

    PubMed  CAS  Google Scholar 

  • Gao XD, Nishikawa A, Dean N (2004) Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology 14:559–570

    PubMed  CAS  Google Scholar 

  • Gemmill TR, Trimble RB (1996) Schizosaccharomyces pombe produces novel pyruvate-containing N-linked oligosaccharides. J Biol Chem 271:25945–25949

    PubMed  CAS  Google Scholar 

  • Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175

    PubMed  CAS  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155

    PubMed  CAS  Google Scholar 

  • Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    PubMed  CAS  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    PubMed  CAS  Google Scholar 

  • Gonzales R, Steiner JF, Sande MA (1997) Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians. JAMA 278:901–904

    PubMed  CAS  Google Scholar 

  • Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW (1999) Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274:21375–21386

    PubMed  CAS  Google Scholar 

  • Grabinska K, Palamarczyk G (2002) Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res 2:259–265

    PubMed  CAS  Google Scholar 

  • Gutierrez-Ortega A, Sandoval-Montes C, de Olivera-Flores TJ, Santos-Argumedo L, Gomez-Lim MA (2005) Expression of functional interleukin-12 from mouse in transgenic tomato plants. Transgenic Res 14:877–885

    PubMed  CAS  Google Scholar 

  • Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91:913–917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harpaz N, Schachter H (1980) Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-d-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-d-mannoside beta 2-N-acetylglucosaminyltransferase I. J Biol Chem 255:4894–4902

    PubMed  CAS  Google Scholar 

  • He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Miao Y, Jiang L, Grabowski GA, Clarke LA, Kermode AR (2012) Production of active human glucocerebrosidase in seeds of arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology 22:492–503

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15:364–370

    PubMed  CAS  Google Scholar 

  • Heesen S, Lehle L, Weissmann A, Aebi M (1994) Isolation of the ALG5 locus encoding the UDP-glucose:dolichyl-phosphate glucosyltransferase from Saccharomyces cerevisiae. Eur J Biochem 224:71–79

    PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    PubMed  CAS  Google Scholar 

  • Higgins E (2010) Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 27:211–225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li CP, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    CAS  Google Scholar 

  • Hosokawa N, Kato K, Kamiya Y (2010) Mannose 6-phosphate receptor homology domain-containing lectins in mammalian endoplasmic reticulum-associated degradation. Methods Enzymol 480:181–197

    PubMed  CAS  Google Scholar 

  • Jin C, Altmann F, Strasser R, Mach L, Schahs M, Kunert R, Rademacher T, Glossl J, Steinkellner H (2008) A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology 18:235–241

    PubMed  CAS  Google Scholar 

  • Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21:77–80

    PubMed  CAS  Google Scholar 

  • Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, Kneer J, Battersby JE (2007) Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17:529–540

    PubMed  CAS  Google Scholar 

  • Jones D, Kroos N, Anema R, van Montfort B, Vooys A, van der Kraats S, van der Helm E, Smits S, Schouten J, Brouwer K, Lagerwerf F, van Berkel P, Opstelten DJ, Logtenberg T, Bout A (2003) High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog 19:163–168

    PubMed  CAS  Google Scholar 

  • Kaiser J (2008) Is the drought over for pharming? Science 320:473–475

    PubMed  CAS  Google Scholar 

  • Kajiura H, Wasai M, Kasahara S, Takaiwa F, Fujiyama K (2013) N-glycosylation and N-glycan moieties of CTB expressed in rice seeds. Mol Biotechnol 54:784–794

    PubMed  CAS  Google Scholar 

  • Kalsner I, Hintz W, Reid LS, Schachter H (1995) Insertion into Aspergillus nidulans of functional UDP-GlcNAc: alpha 3-d-mannoside beta-1,2-N-acetylglucosaminyl-transferase I, the enzyme catalysing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconj J 12:360–370

    PubMed  CAS  Google Scholar 

  • Kang JS, Frank J, Kang CH, Kajiura H, Vikram M, Ueda A, Kim S, Bahk JD, Triplett B, Fujiyama K, Lee SY, von Schaewen A, Koiwa H (2008) Salt tolerance of arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc Natl Acad Sci USA 105:5933–5938

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kariya Y, Ishida K, Tsubota Y, Nakashima Y, Hirosaki T, Ogawa T, Miyazaki K (2002) Efficient expression system of human recombinant laminin-5. J Biochem 132:607–612

    PubMed  CAS  Google Scholar 

  • Kaulfurst-Soboll H, Rips S, Koiwa H, Kajiura H, Fujiyama K, von Schaewen A (2011) Reduced immunogenicity of arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes. J Biol Chem 286:22955–22964

    PubMed  PubMed Central  Google Scholar 

  • Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R

    PubMed  CAS  Google Scholar 

  • Khoudi H, Laberge S, Ferullo JM, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R, Vezina LP (1999) Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioeng 64:135–143

    PubMed  CAS  Google Scholar 

  • Kitajima T, Chiba Y, Jigami Y (2006) Saccharomyces cerevisiae alpha1,6-mannosyltransferase has a catalytic potential to transfer a second mannose molecule. FEBS J 273:5074–5085

    PubMed  CAS  Google Scholar 

  • Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M, Hillyer T, Pedley RB, Vervecken W, Contreras R, Begent RH, Chester KA (2007) Clearance mechanism of a mannosylated antibody–enzyme fusion protein used in experimental cancer therapy. Glycobiology 17:36–45

    PubMed  CAS  Google Scholar 

  • Koles K, Irvine KD, Panin VM (2004) Functional characterization of Drosophila sialyltransferase. J Biol Chem 279:4346–4357

    PubMed  CAS  Google Scholar 

  • Kusnadi AR, Hood EE, Witcher DR, Howard JA, Nikolov ZL (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14:149–155

    PubMed  CAS  Google Scholar 

  • Lal A, Pang P, Kalelkar S, Romero PA, Herscovics A, Moremen KW (1998) Substrate specificities of recombinant murine Golgi alpha1, 2-mannosidases IA and IB and comparison with endoplasmic reticulum and Golgi processing alpha1,2-mannosidases. Glycobiology 8:981–995

    PubMed  CAS  Google Scholar 

  • Lawrence S (2007) Billion dollar babies—biotech drugs as blockbusters. Nat Biotechnol 25:380–382

    PubMed  CAS  Google Scholar 

  • Leiter H, Mucha J, Staudacher E, Grimm R, Glossl J, Altmann F (1999) Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase from mung beans. J Biol Chem 274:21830–21839

    PubMed  CAS  Google Scholar 

  • Leonard R, Costa G, Darrambide E, Lhernould S, Fleurat-Lessard P, Carlue M, Gomord V, Faye L, Maftah A (2002) The presence of Lewis a epitopes in arabidopsis thaliana glycoconjugates depends on an active alpha4-fucosyltransferase gene. Glycobiology 12:299–306

    PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    PubMed  CAS  Google Scholar 

  • Lerouxel O, Mouille G, Andeme-Onzighi C, Bruyant MP, Seveno M, Loutelier-Bourhis C, Driouich A, Hofte H, Lerouge P (2005) Mutants in DEFECTIVE GLYCOSYLATION, an arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant J 42:455–468

    PubMed  CAS  Google Scholar 

  • Liebminger E, Huttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C, Seifert GJ, Altmann F, Mach L, Strasser R (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in arabidopsis thaliana. Plant Cell 21:3850–3867

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liebminger E, Veit C, Pabst M, Batoux M, Zipfel C, Altmann F, Mach L, Strasser R (2011) Beta-N-acetylhexosaminidases HEXO1 and HEXO3 are responsible for the formation of paucimannosidic N-glycans in arabidopsis thaliana. J Biol Chem 286:10793–10802

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu H, Bulseco GG, Sun J (2006) Effect of posttranslational modifications on the thermal stability of a recombinant monoclonal antibody. Immunol Lett 106:144–153

    PubMed  CAS  Google Scholar 

  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, Depicker A, Steinkellner H (2011) Expression of antibody fragments with a controlled N-glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of arabidopsis. Plant Physiol 155:2036–2048

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ma JKC, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, Van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    PubMed  CAS  Google Scholar 

  • Ma SW, Zhao DL, Yin ZQ, Mukherjee R, Singh B, Qin HY, Stiller CR, Jevnikar AM (1997) Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat Med 3:793–796

    PubMed  CAS  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    PubMed  CAS  Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K, Lee JM (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif 13:45–52

    PubMed  CAS  Google Scholar 

  • Markley N, Nykiforuk C, Boothe J, Moloney M (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int 19:34

    CAS  Google Scholar 

  • Marlin SD, Staunton DE, Springer TA, Stratowa C, Sommergruber W, Merluzzi VJ (1990) A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature 344:70–72

    PubMed  CAS  Google Scholar 

  • Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK, Arntzen CJ (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci USA 93:5335–5340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mason HS, Lam DMK, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89:11745–11749

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nandi S, Suzuki YA, Huang J, Yalda D, Pham P, Wu L, Bartley G, Huang N, Lönnerdal B (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163:713–722

    CAS  Google Scholar 

  • Nechansky A, Schuster M, Jost W, Siegl P, Wiederkum S, Gorr G, Kircheis R (2007) Compensation of endogenous IgG mediated inhibition of antibody-dependent cellular cytotoxicity by glyco-engineering of therapeutic antibodies. Mol Immunol 44:1815–1817

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    PubMed  CAS  Google Scholar 

  • Noffz C, Keppler-Ross S, Dean N (2009) Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle. Glycobiology 19:472–478

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nuttall J, Ma JK, Frigerio L (2005) A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnol J 3:497–504

    PubMed  CAS  Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    PubMed  Google Scholar 

  • Okanoue T, Sakamoto S, Yasui K, Takami S, Enjo F, Kashima K, Nakagawa Y, Tada H, Kanaoka H, Ohta M et al (1994) Side effects of interferon on endocrine and respiratory system in 545 cases of chronic hepatitis C. Nihon Shokakibyo Gakkai Zasshi 91:995–1002

    PubMed  CAS  Google Scholar 

  • Owen M, Gandecha A, Cockburn B, Whitelam G (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology (N Y) 10:790–794

    CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:867

    PubMed  CAS  Google Scholar 

  • Parmenter DL, Boothe JG, van Rooijen GJ, Yeung EC, Moloney MM (1995) Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    PubMed  CAS  Google Scholar 

  • Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    PubMed  CAS  Google Scholar 

  • Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67

    PubMed  CAS  Google Scholar 

  • Perry CM, Wilde MI (1998) Interferon-alpha-2a: a review of its use in chronic hepatitis C. BioDrugs 10:65–89

    PubMed  CAS  Google Scholar 

  • Puccia R, Grondin B, Herscovics A (1993) Disruption of the processing alpha-mannosidase gene does not prevent outer chain synthesis in Saccharomyces cerevisiae. Biochem J 290(Pt 1):21–26

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rainer F, Schumann D, Zimmermann S, Drossard J, Sack M, Schillberg S (1999) Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur J Biochem 262:810–816

    Google Scholar 

  • Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    PubMed  CAS  Google Scholar 

  • Rayner JC, Munro S (1998) Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J Biol Chem 273:26836–26843

    PubMed  CAS  Google Scholar 

  • Reiss G, te Heesen S, Zimmerman J, Robbins PW, Aebi M (1996) Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway. Glycobiology 6:493–498

    PubMed  CAS  Google Scholar 

  • Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380

    PubMed  CAS  Google Scholar 

  • Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:272–283

    PubMed  CAS  PubMed Central  Google Scholar 

  • Runge KW, Robbins PW (1986) A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J Biol Chem 261:15582–15590

    PubMed  CAS  Google Scholar 

  • Sanyal S, Menon AK (2009a) Flipping lipids: why an’ what’s the reason for? ACS Chem Biol 4:895–909

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sanyal S, Menon AK (2009b) Specific transbilayer translocation of dolichol-linked oligosaccharides by an endoplasmic reticulum flippase. Proc Natl Acad Sci USA 106:767–772

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60:433–445

    PubMed  CAS  Google Scholar 

  • Schmidt HH, Genschel J, Haas R, Buttner C, Manns MP (1997) Expression and purification of recombinant human apolipoprotein A-I in Chinese hamster ovary cells. Protein Expr Purif 10:226–236

    PubMed  CAS  Google Scholar 

  • Schmitz J, Poll LW, vom Dahl S (2007) Therapy of adult Gaucher disease. Haematologica 92:148–152

    PubMed  CAS  Google Scholar 

  • Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582

    PubMed  CAS  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    PubMed  CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    PubMed  CAS  Google Scholar 

  • Shoji Y, Bi H, Musiychuk K, Rhee A, Horsey A, Roy G, Green B, Shamloul M, Farrance CE, Taggart B, Mytle N, Ugulava N, Rabindran S, Mett V, Chichester JA, Yusibov V (2009) Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine 27:1087–1092

    PubMed  CAS  Google Scholar 

  • Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V, Musiychuk K, Bi H, Farrance C, Shamloul M, Kushnir N, Sharma S, Yusibov V (2011) Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccines 7:41–50

    CAS  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology (N Y) 8:217–221

    CAS  Google Scholar 

  • Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol 3

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    PubMed  CAS  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    PubMed  CAS  Google Scholar 

  • Strasser R, Altmann F, Mach L, Glossl J, Steinkellner H (2004) Generation of arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561:132–136

    PubMed  CAS  Google Scholar 

  • Strasser R, Bondili JS, Vavra U, Schoberer J, Svoboda B, Glossl J, Leonard R, Stadlmann J, Altmann F, Steinkellner H, Mach L (2007) A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in arabidopsis thaliana. Plant Cell 19:2278–2292

    PubMed  PubMed Central  Google Scholar 

  • Strasser R, Schoberer J, Jin C, Glossl J, Mach L, Steinkellner H (2006) Molecular cloning and characterization of arabidopsis thaliana Golgi alpha-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant J 45:789–803

    PubMed  CAS  Google Scholar 

  • Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glossl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402

    PubMed  CAS  Google Scholar 

  • Strasser R, Steinkellner H, Boren M, Altmann F, Mach L, Glossl J, Mucha J (1999) Molecular cloning of cDNA encoding N-acetylglucosaminyltransferase II from arabidopsis thaliana. Glycoconj J 16:787–791

    PubMed  CAS  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    PubMed  CAS  Google Scholar 

  • Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N (2004) Role of N-glycans in growth factor signaling. Glycoconj J 20:207–212

    PubMed  CAS  Google Scholar 

  • Takashima S (2008) Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci Biotechnol Biochem 72:1155–1167

    PubMed  CAS  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472

    PubMed  CAS  Google Scholar 

  • Taylor SC, Thibault P, Tessier DC, Bergeron JJ, Thomas DY (2003) Glycopeptide specificity of the secretory protein folding sensor UDP-glucose glycoprotein:glucosyltransferase. EMBO Rep 4:405–411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Totani K, Ihara Y, Tsujimoto T, Matsuo I, Ito Y (2009) The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 48:2933–2940

    PubMed  CAS  Google Scholar 

  • Trkola A, Pomales AB, Yuan H, Korber B, Maddon PJ, Allaway GP, Katinger H, Barbas CF 3rd, Burton DR, Ho DD et al (1995) Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 69:6609–6617

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tulsiani DR, Hubbard SC, Robbins PW, Touster O (1982) alpha-d-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J Biol Chem 257:3660–3668

    PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    PubMed  CAS  Google Scholar 

  • van Ree R, Cabanes-Macheteau M, Akkerdaas J, Milazzo JP, Loutelier-Bourhis C, Rayon C, Villalba M, Koppelman S, Aalberse R, Rodriguez R, Faye L, Lerouge P (2000) Beta(1,2)-xylose and alpha(1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem 275:11451–11458

    PubMed  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96:11128–11133

    PubMed  CAS  PubMed Central  Google Scholar 

  • von Schaewen A, Sturm A, O’Neill J, Chrispeels MJ (1993) Isolation of a mutant arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol 102:1109–1118

    Google Scholar 

  • Walsh G (2010a) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    PubMed  CAS  Google Scholar 

  • Walsh G (2010b) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15:773–780

    PubMed  CAS  Google Scholar 

  • Wang XH, Nakayama K, Shimma Y, Tanaka A, Jigami Y (1997) MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J Biol Chem 272:18117–18124

    PubMed  CAS  Google Scholar 

  • Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci USA 93:13797–13801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    PubMed  CAS  Google Scholar 

  • Wilson IB (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol 12:569–577

    PubMed  CAS  Google Scholar 

  • Wilson IB, Zeleny R, Kolarich D, Staudacher E, Stroop CJ, Kamerling JP, Altmann F (2001) Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. Glycobiology 11:261–274

    PubMed  CAS  Google Scholar 

  • Witcher DR, Hood EE, Peterson D, Bailey M, Bond D, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh R, Kappel W, Register J, Howard JA (1998) Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Mol Breed 4:301–312

    CAS  Google Scholar 

  • Yang D, Guo F, Liu B, Huang N, Watkins SC (2003) Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta 216:597–603

    PubMed  CAS  Google Scholar 

  • Yip CL, Welch SK, Klebl F, Gilbert T, Seidel P, Grant FJ, O’Hara PJ, MacKay VL (1994) Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 91:2723–2727

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloyd P, Cremata JA (2005) Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures. Adv Exp Med Biol 564:141–142

    PubMed  CAS  Google Scholar 

  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164

    PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, Montagu MV, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhong GY, Peterson D, Delaney DE, Bailey M, Witcher DR, Register Iii JC, Bond D, Li CP, Marshall L, Kulisek E, Ritland D, Meyer T, Hood EE, Howard JA (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breed 5:345–356

    CAS  Google Scholar 

  • Zhu Z, Hughes KW, Huang L, Sun B, Liu C, Li Y, Hou Y, Li X (1994) Expression of human alpha-interferon cDNA in transgenic rice plants. Plant Cell Tissue Organ Cult 36:197–204

    CAS  Google Scholar 

  • Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Munoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S, Aviezer D (2011) Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 118:5767–5773

    PubMed  CAS  Google Scholar 

  • Zufferey R, Knauer R, Burda P, Stagljar I, te Heesen S, Lehle L, Aebi M (1995) STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J 14:4949–4960

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Next-Generation BioGreen Program (SSAC, PJ008109), the Technology Innovation Program funded by the Ministry of Trade, Industry & Energy (10048311) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2001074), Republic of Korea. J.Y. Yoo and K.S. Ko were supported by scholarships from the BK21 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyun Oh Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, J.Y., Ko, K.S., Lee, S.Y. et al. Glycoengineering in plants for the development of N-glycan structures compatible with biopharmaceuticals. Plant Biotechnol Rep 8, 357–376 (2014). https://doi.org/10.1007/s11816-014-0328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0328-1

Keywords

Navigation