Skip to main content
Log in

Proteome analysis of chlorotic leaves of the Arabidopsis mex1 mutant defective in the mobilization of starch degradation products

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Leaf starch synthesized during the day for transient storage of photoassimilated carbon is degraded the following night to support respiration and growth in plants. Maltose is a major product of starch degradation, and is exported to the cytosol through the maltose transporter (MEX1). The Arabidopsis mex1 mutant displays growth retardation and an exceptional chlorotic phenotype that is not observed in other mutants demonstrating defective starch synthesis or degradation. Consistent with the chlorotic phenotype, proteomic analysis revealed degeneration of the photosynthetic machinery in mex1, and the down-regulation of essential components for photosynthesis was also observed. The chlorosis observed in mex1 occurs during vegetative growth period under normal growth conditions, which is distinct from general senescence-induced chlorosis. No up-regulation of senescence-related genes was found in the proteomic analysis of mex1, suggesting that the chlorotic process occurring in mex1 is likely distinct from senescence-dependent processes. On the other hand, cellular processes needed to survive stress situations caused by the blocking of maltose export are induced in mex1 by up-regulation of stress-related proteins, such as a germin-like protein and glutathione S-transferase. The increased abundance of heat shock protein 93-V participating in chloroplast biogenesis and rubisco activase, a regulatory protein of photosynthesis, likely reflects an attempt by the mex1 mutant to maintain chloroplast function to survive stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress response of plants. Autophagy 2:2–11

    PubMed  CAS  Google Scholar 

  • Brahim S, Joke D, Ann C, Jean-Paul N, Marjo T, Arja T, Sirpa K, van Frank B, Karen S, Jaco V (2010) Leaf proteome response of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Article  Google Scholar 

  • Breen J, Bellgard M (2010) Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamics role in plast defence. Funct Intergr Genomics 10:463–476

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22

    Article  PubMed  CAS  Google Scholar 

  • Bushnell TP, Bushnell D, Jagendorf AT (1993) A purified zinc protease of pea chloroplasts, EP1, degrades the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 103:585–591

    PubMed  CAS  Google Scholar 

  • Caspar T, Huber SC, Somerville C (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79:11–17

    Article  PubMed  CAS  Google Scholar 

  • Cazalé AC, Clement M, Chiarenza S, Roncato M, Pochon N, Creff A, Marin E, Leonhardt N, Noël LD (2009) Altered expression of cytosolic/nuclear HSC 70–1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot 60:2653–2664

    Article  PubMed  Google Scholar 

  • Cho MH, Lim H, Shin DH, Jeon JS, Bhoo SH, Park YI, Hahn TR (2011) Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. New Phytol 190:101–112

    Article  CAS  Google Scholar 

  • Critchley JH, Zeeman SC, Tanaka T, Smith AM, Smith AM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J 26:89–100

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1–3004.10

    Article  Google Scholar 

  • Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kües U, Polle A (2012) Verticillium longisporum infection affects the leaf apoplstic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS ONE 7:e31435

    Article  PubMed  CAS  Google Scholar 

  • Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G (2008) β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058

    Article  PubMed  CAS  Google Scholar 

  • Gepstein S, Sabehi G, Carp M, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  PubMed  CAS  Google Scholar 

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  PubMed  CAS  Google Scholar 

  • Han S, Yu B, Wang Y, Liu Y (2011) Role of plant autophagy in stress response. Protein Cell 2:784–791

    Article  PubMed  Google Scholar 

  • Hofmann J, Börnke F, Schmiedl A, Kleine T, Sonnewald U (2011) Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses. Front Plant Sci 2:82

    Article  PubMed  CAS  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Hussain H, Mant A, Seale R, Zeeman SC, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith AM, Martin C, Bustos R (2003) Three isoforms of isoamylase contribute different catalytic properties for debranching of potato glucans. Plant Cell 15:133–149

    Article  PubMed  CAS  Google Scholar 

  • Hwang H, Cho MH, Hahn BS, Lim H, Kwon YK, Hahn TR, Bhoo SH (2011) Proteomic identification of rhythmic proteins in rice seedlings. Biochim Biophys Acta 1814:470–479

    Article  PubMed  CAS  Google Scholar 

  • Izumi M, Wada S, Makino A, Ishida H (2010) The autophagic degradation of chloroplast via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol 154:1196–1209

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44:730–743

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Bouras N, Kav NNV, Strelkov SE (2010) Inhibition of photosynthesis and modification of the wheat leaf proteome by PtrToxB: a host-specific toxin from the fungal pathogen Pyrenophoratritici-repentis. Proteomics 10:2911–2926

    Article  PubMed  CAS  Google Scholar 

  • Kovacheva S, Bédard J, Patel R, Dudley P, Twell D, Rios G, Koncz C, Jarvis P (2005) In vivo studies on the roles of Tic100, Tic40 and Hsp93 during chloroplast protein import. Plant J 41:412–428

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Toh-e A, Smalle JA (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53:102–114

    Article  PubMed  CAS  Google Scholar 

  • Lin TP, Caspar T, Somerville C, Preiss K (1988) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Yin K, Wang X, Liu M, Chen Z, Gu H, Qu L (2007) Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant Physiol Biochem 25:87–94

    Article  CAS  Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation come out of the shadows. Trends Plant Sci 10:130–137

    Article  PubMed  CAS  Google Scholar 

  • Lohman KN, Gan S, John MC, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92:322–328

    Article  CAS  Google Scholar 

  • Mae T, Makino A, Ohira K (1983) Changes in the amouts of ribulose bisphosphate carboxylase synthesized and degraded the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol 24:1079–1086

    CAS  Google Scholar 

  • Meijer WJ, Klei IJ, Veenhuis M, Kiel JA (2007) Atg genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathway also require organism-specific genes. Autophagy 3:106–116

    PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Minamikawa T, Toyooka K, Okamoto T, Hara-Nishimura I, Nishimura M (2001) Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing French bean leaves: immunocytochemical and ultrastructural observations. Protoplasma 218:144–153

    Article  PubMed  CAS  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling—specificity is required. Trends Plant Sci 15:370–374

    Article  PubMed  Google Scholar 

  • Musgrove JE, Elderfield PD, Robinson C (1989) Endopeptidases in stroma and thylakoids of pea chloroplasts. Plant Physiol 90:1616–1621

    Article  PubMed  CAS  Google Scholar 

  • Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    Article  PubMed  Google Scholar 

  • Noël LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    Article  PubMed  Google Scholar 

  • Ono K, Hashimoto H, Katoh S (1995) Changes in the number and size of chloroplasts during senescence of primary leaves of wheat grown under different conditions. Plant Cell Physiol 36:9–17

    CAS  Google Scholar 

  • Phee BK, Cho JH, Park S, Jung JH, Lee YH, Jeon JS, Bhoo SH, Hahn TR (2004) Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics 4:3560–3568

    Article  PubMed  CAS  Google Scholar 

  • Scheidig A, Fröhlich A, Schulze S, Lloyd JR, Kossmann R (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J. 30:581–591

    Article  PubMed  CAS  Google Scholar 

  • Servaites JC, Geiger DR (2002) Kinetic characteristics of chloroplast glucose transport. J Exp Bot 53:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Theg SM (2011) The motors of protein import into chloroplasts. Plant Signal Behav 6:1397–1401

    Article  PubMed  CAS  Google Scholar 

  • Shringapure R, Grune T, Mehlhase J, Davies KJA (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  Google Scholar 

  • Sjögren LLE, MacDonald TM, Sutien S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136:4114–4126

    Article  PubMed  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  PubMed  CAS  Google Scholar 

  • Stettler M, Eicke S, Mettler T, Messerli G, Hörtenseiner S, Zeeman SC (2009) Blocking the metabolism of the starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol Plant 2:1233–1246

    Article  PubMed  CAS  Google Scholar 

  • Viestra RD (1996) Proteolysis in plants: mechanism and functions. Plant Mol Biol 32:275–302

    Article  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  PubMed  CAS  Google Scholar 

  • Weber APM (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7:247–253

    Article  PubMed  CAS  Google Scholar 

  • Weber APM, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, Hebberker U, Flügge UI (2000) Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell 12:787–801

    PubMed  CAS  Google Scholar 

  • Weise SE, Webber APM, Sharkey TD (2004) Maltose is the major form of carbon exported form the chloroplast at night. Planta 218:474–482

    Article  PubMed  CAS  Google Scholar 

  • Wittenbach VA (1982) Effect of pod removal of leaf senescence in soybeans. Plant Physiol 70:1544–1548

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Barral JM, Ulrich Hartl F (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem Sci 28:541–547

    Article  PubMed  CAS  Google Scholar 

  • Yu T, Kofler H, Hausler RE, Hille D, Flügge U, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M et al (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13:1907–1918

    PubMed  CAS  Google Scholar 

  • Zeeman SC, AP Rees T (1999) Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ 22:1445–1453

    Article  CAS  Google Scholar 

  • Zeeman SC, Tiessen A, Pilling E, Kato L, Donald AM, Smith AM (2002) Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure. Plant Physiol 129:516–529

    Article  PubMed  CAS  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 410:13–28

    Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:15.1–15.26

    Article  Google Scholar 

  • Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–2489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Next-Generation BioGreen 21 Program (SSAC, Grant#: PJ008114 and PJ008094), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Ryong Hahn.

Additional information

H. Hwang and M.-H. Cho contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H., Cho, MH., Bhoo, S.H. et al. Proteome analysis of chlorotic leaves of the Arabidopsis mex1 mutant defective in the mobilization of starch degradation products. Plant Biotechnol Rep 7, 321–330 (2013). https://doi.org/10.1007/s11816-012-0265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0265-9

Keywords

Navigation