Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view

Abstract

Molecular genetics has confirmed older research and generated new insights into the ways how plants deal with adverse conditions. This body of research is now being used to interpret stress behavior of plants in new ways, and to add results from most recent genomics-based studies. The new knowledge now includes genome sequences of species that show extreme abiotic stress tolerances, which enables new strategies for applications through either molecular breeding or transgenic engineering. We will highlight some physiological features of the extremophile lifestyle, outline emerging features about halophytism based on genomics, and discuss conclusions about underlying mechanisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138:171–190

    Article  CAS  Google Scholar 

  2. Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis-relative Thellungiella salsuginea, shows K+-specificity in the presence of NaCl. Plant Physiol 158:1463–1474

    PubMed  Article  CAS  Google Scholar 

  3. Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982–13986

    PubMed  Article  CAS  Google Scholar 

  4. Aronson JA (1989) HALOPH: a data base of salt tolerant plants of the world. Arid land studies. University of Arizona, Tucson

    Google Scholar 

  5. Ayers RS, Westcot DW (1985) Water quality for agriculture. Fao Irrigation and Drainage Paper 29 (Rev. 1). Food and Agriculture Organization (FAO) of the United Nations. Rome

  6. Balsamo RA, Thomson WW (1993) Ultrastructural features associated with secretion in the salt glands of Frankenia grandifolia (Frankeniaceae) and Avicennia germinans (Avicenniaceae). Am J Bot 80:1276–1283

    Article  Google Scholar 

  7. Balsamo RA, Thomson WW (1996) Isolation of mesophyll and secretory cell protoplasts of the halophyte Ceratostigma plumbaginoides (L.): a comparison of ATPase concentration and activity. Plant Cell Rep 15:418–422

    Article  CAS  Google Scholar 

  8. Bertorello AM, Zhu JK (2009) SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch Eur J Physiol 458:613–619

    Article  CAS  Google Scholar 

  9. Bohnert HJ, Cushman JC (2000) The ice plant cometh—models for environmental stress tolerance. J Plant Growth Regul 19:334–346

    Article  CAS  Google Scholar 

  10. Breckle S-W (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere. Springer, Berlin

  11. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    PubMed  Article  CAS  Google Scholar 

  12. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    PubMed  Article  Google Scholar 

  13. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    PubMed  Article  CAS  Google Scholar 

  14. Chen ZJ, Wang J, Tian L, Lee HS, Wang JJ, Chen M, Lee JJ, Josefsson C, Madlung A, Watson B, Lippman Z, Vaughn M, Pires JC, Colot V, Doerge RW, Martienssen RA, Comai L, Osborn TC (2004) The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biol J Linn Soc 82:689–700

    Article  Google Scholar 

  15. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J; Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Google Scholar 

  16. Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769

    Article  CAS  Google Scholar 

  17. Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    PubMed  Article  CAS  Google Scholar 

  18. Dalton FN, Maggio A, Piccinni G (2000) Simulation of shoot chloride accumulation: separation of physical and biochemical processes governing plant salt tolerance. Plant Soil 219:1–11

    Article  CAS  Google Scholar 

  19. Dassanayake M, Oh DH, Haas J, Hernandez AG, Ali S, Hong H, Yun DJ, Bressan RA, Zhu J-K, Bohnert HJ, Cheeseman JM (2011a) The genome sequence of an extremophile Arabidopsis-relative: Thellungiella parvula. Nat Genet 43:913–918

    PubMed  Article  CAS  Google Scholar 

  20. Dassanayake M, Oh DH, Hong H, Bohnert HJ, Cheeseman JM (2011b) Importance of transcription control for halophytic life. Trends Plant Sci 16:1–3

    PubMed  Article  CAS  Google Scholar 

  21. Deng Z, Li Y, Xia R, Wang W, Huang X, Zhang L, Zhang S, Yang C, Zhang Y, Chen M, Xie Q (2009) Structural analysis of 83-kb genomic DNA from Thellungiella halophila: sequence features and micro-colinearity between salt cress and Arabidopsis thaliana. Genomics 94:324–332

    PubMed  Article  CAS  Google Scholar 

  22. Farnsworth E (2004) Hormones and shifting ecology throughout plant development. Ecology 85:5–15

    Article  Google Scholar 

  23. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    PubMed  Article  CAS  Google Scholar 

  24. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  Article  CAS  Google Scholar 

  25. Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  26. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  27. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  28. Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116

    PubMed  Article  CAS  Google Scholar 

  29. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    PubMed  Article  CAS  Google Scholar 

  30. Freitas H, Breckle S-W (1992) Importance of bladder hairs for salt tolerance of field-grown Atriplex species from a Portuguese salt marsh. Flora 187:283–297

    Google Scholar 

  31. Glenn EP (1987) Relationship between cation accumulation and water content of salt tolerant grasses and a sedge. Plant Cell Environ 10:205–212

    CAS  Google Scholar 

  32. Glenn EP, O’Leary J (1984) Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant Cell Environ 7:253–261

    CAS  Google Scholar 

  33. Glenn E, Miyamoto S, Moore D, Brown J, Thompson T, Brown P (1985) Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730

    Article  Google Scholar 

  34. Glenn E, O’Leary J, Watson M, Thompson T, Kuehl R (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251:1065–1067

    PubMed  Article  CAS  Google Scholar 

  35. Glenn EP, Watson MC, O’Leary JW, Axelson RD (1992) Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte, Atriplex canescens. Plant Cell Environ 15:711–718

    Article  CAS  Google Scholar 

  36. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  37. Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    PubMed  Article  CAS  Google Scholar 

  38. Greenway H (1968) Growth stimulation by high chloride concentrations in halophytes. Isr J Bot 17:169–177

    CAS  Google Scholar 

  39. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  40. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    PubMed  Article  Google Scholar 

  41. Inan G, Zhang H, Li P, Wang Z, Cao Z, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    PubMed  Article  CAS  Google Scholar 

  42. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    PubMed  Article  CAS  Google Scholar 

  43. Kato T, Emi M, Sato H, Arawaka S, Wada M, Kawanami T, Katagiri T, Tsuburaya K, Toyoshima I, Tanaka F, Sobue G, Matsubara K (2010) Segmental copy-number gain within the region of isopentenyl diphosphate isomerase genes in sporadic amyotrophic lateral sclerosis. Biochem Biophys Res Commun 402:438–442

    PubMed  Article  CAS  Google Scholar 

  44. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    PubMed  CAS  Google Scholar 

  45. Kramer PJ (1984) Problems in water relations of plants and cells. In: Kramer PJ (ed) International review of cytology, pp 254–286

  46. Kreeb K (1974) Pflanzen an Salzstandorten. Naturwissenschaften 61:337–343

    Article  CAS  Google Scholar 

  47. Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:e1000223

    PubMed  Article  Google Scholar 

  48. Le Houerou HN (1993) Salt-tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 403–422

  49. Liphschitz N, Waisel Y (1982) Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen D, Rajpurohit K (eds) Tasks for vegetation science. Dr. W. Junk, The Hague, pp 197–214

  50. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136

    PubMed  Article  CAS  Google Scholar 

  51. Maggio A, Zhu JK, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557

    PubMed  Article  CAS  Google Scholar 

  52. Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  53. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    PubMed  Article  Google Scholar 

  54. Mata-González R, Meléndez-González R, Martínez-Hernández JJ (2001) Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability. USDA Forest Service Proc RMRS-P-21, pp 308-311

  55. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  Article  CAS  Google Scholar 

  56. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    PubMed  Article  CAS  Google Scholar 

  57. Oh DH, Dassanayake M, Kropornika A, Paino d’Urzo M, Lambert G, Galbraith DW, Bressan RA, Zhu JK, Yun DJ, Cheeseman JM, Bohnert HJ (2010) Chromosome structures of the extreme halophyte Thellungiella parvula distinguished from Thellungiella salsuginea (T. halophila) and Arabidopsis thaliana. Plant Physiol 154:1040–1052

    PubMed  Article  CAS  Google Scholar 

  58. Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  59. Oo KS, Lang NT (2005) Developing salt tolerance in rice by mutagenesis. Omonrice 13:126–134

    Google Scholar 

  60. Orsini F, Paino D’Urzo M, Inan G, Serra S, Oh D-H, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun D-J, Bohnert HJ, Bressan RA, Maggio A (2010) Emerging new Arabidopsis-relative model systems (ARMS): a comparative study of salt tolerance parameters in eleven wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798

    PubMed  Article  CAS  Google Scholar 

  61. Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Ruiz Carrasco K, Martinez E, AlNayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831

    Article  CAS  Google Scholar 

  62. Osmond CB, Bjorkman 0, Anderson DJ (1980) Physiological processes in plant ecology: towards a synthesis with Atriplex. In: Ecological studies, vol 36. Springer, New York

  63. Popp M (1995) Salt resistance in herbaceous halophytes and mangroves. Prog Bot 56:416–429

    Article  CAS  Google Scholar 

  64. Popp M, Albert R (1995) The role of organic solutes in salinity adaptation of mangroves and herbaceous halophytes In: Ajmal Khan M, Ungar IA (eds) Biology of salt tolerant plants. University of Karachi, Pakistan, pp 139–149

  65. Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol, pp 1–7 (epub 5 January 2012)

  66. Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563

    PubMed  Article  Google Scholar 

  67. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    PubMed  Article  CAS  Google Scholar 

  68. Rindos D (1987) The origins of agriculture: an evolutionary perspective. Academic Press, Orlando

    Google Scholar 

  69. Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, Difazio SP (2012) Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res 22:95–105

    PubMed  Article  CAS  Google Scholar 

  70. Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488

    Article  Google Scholar 

  71. Schirmer U, Breckle S-W (1982) The role of bladders for salt removal in some Chenopodiaceae (mainly) Atriplex species. In: Sen DN, Rajpurohit KS (eds) T:VS 2 (tasks for vegetative science 2) contributions to the ecology of halophytes. Dr. W. Junk Publishers, Hague, pp 215–231

    Google Scholar 

  72. Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    PubMed  Article  CAS  Google Scholar 

  73. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    PubMed  Article  CAS  Google Scholar 

  74. Tarasoft CS, Mallory-Smith CA, Ball DA (2007) Comparative plant responses of Puccinellia distans and Puccinellia nuttalliana to sodic versus normal soil types. J Arid Environ 70:403–417

    Article  Google Scholar 

  75. Tuskan GA, Di Fazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  Article  CAS  Google Scholar 

  76. Ungar IA, Pfeiffer CJ (1991) Ecophysiology of vascular halophytes. CRC Press, Boca Raton, p 209

  77. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    PubMed  Article  Google Scholar 

  78. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    PubMed  Article  CAS  Google Scholar 

  79. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    PubMed  Article  CAS  Google Scholar 

  80. Wang W, Wu Y, Li Y, Xie J, Zhang Z, Deng Z, Zhang Y, Yang C, Lai J, Zhang H, Bao H, Tang S, Yang C, Gao P, Xia G, Guo H, Xie Q (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99

    PubMed  Article  CAS  Google Scholar 

  81. Waszak SM, Hasin Y, Zichner T, Olender T, Keydar I, Khen M, Stütz AM, Schlattl A, Lancet D, Korbel JO (2010) Systematic inference of copy-number genotypes from personal genome sequencing data reveals extensive olfactory receptor gene content diversity. PLoS Comput Biol 6:e1000988

    PubMed  Article  Google Scholar 

  82. Waterhouse RM, Zdobnov EM, Kriventseva EV (2011) Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi. Genome Biol Evol 3:75–86

    PubMed  Article  CAS  Google Scholar 

  83. Yang HM, Zhang JH, Zhang XY (2005) Regulation mechanisms of stomatal oscillation. J Integr Plant Biol 47:1159–1172

    Article  CAS  Google Scholar 

  84. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    PubMed  Article  CAS  Google Scholar 

  85. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hyewon Hong (GNU, Korea) and Q. Xie (Chinese Academy of Science, Bejing, China) for permission to refer to unpublished data. This work was supported by the World Class University Program (Grant No. R32-10148), funded by the Ministry of Education, Science, and Technology, and the Next-Generation BioGreen 21 Program (Grant No. PJ008025), Rural Development Administration, Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Albino Maggio.

Additional information

R.A. Bressan and H.C. Park contributed equally to the article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bressan, R.A., Park, H.C., Orsini, F. et al. Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotechnol Rep 7, 27–37 (2013). https://doi.org/10.1007/s11816-012-0249-9

Download citation

Keywords

  • Thellungiella
  • Extremophile species
  • Genome sequences
  • Abiotic stress protection
  • Biotechnology potential