Advertisement

Plant Biotechnology Reports

, Volume 7, Issue 1, pp 27–37 | Cite as

Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view

  • Ray A. Bressan
  • Hyeong Cheol Park
  • Francesco Orsini
  • Dong-ha Oh
  • Maheshi Dassanayake
  • Gunsu Inan
  • Dae-Jin Yun
  • Hans J. Bohnert
  • Albino MaggioEmail author
Review Article

Abstract

Molecular genetics has confirmed older research and generated new insights into the ways how plants deal with adverse conditions. This body of research is now being used to interpret stress behavior of plants in new ways, and to add results from most recent genomics-based studies. The new knowledge now includes genome sequences of species that show extreme abiotic stress tolerances, which enables new strategies for applications through either molecular breeding or transgenic engineering. We will highlight some physiological features of the extremophile lifestyle, outline emerging features about halophytism based on genomics, and discuss conclusions about underlying mechanisms.

Keywords

Thellungiella Extremophile species Genome sequences Abiotic stress protection Biotechnology potential 

Notes

Acknowledgments

We thank Hyewon Hong (GNU, Korea) and Q. Xie (Chinese Academy of Science, Bejing, China) for permission to refer to unpublished data. This work was supported by the World Class University Program (Grant No. R32-10148), funded by the Ministry of Education, Science, and Technology, and the Next-Generation BioGreen 21 Program (Grant No. PJ008025), Rural Development Administration, Republic of Korea.

References

  1. Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138:171–190CrossRefGoogle Scholar
  2. Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis-relative Thellungiella salsuginea, shows K+-specificity in the presence of NaCl. Plant Physiol 158:1463–1474PubMedCrossRefGoogle Scholar
  3. Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982–13986PubMedCrossRefGoogle Scholar
  4. Aronson JA (1989) HALOPH: a data base of salt tolerant plants of the world. Arid land studies. University of Arizona, TucsonGoogle Scholar
  5. Ayers RS, Westcot DW (1985) Water quality for agriculture. Fao Irrigation and Drainage Paper 29 (Rev. 1). Food and Agriculture Organization (FAO) of the United Nations. RomeGoogle Scholar
  6. Balsamo RA, Thomson WW (1993) Ultrastructural features associated with secretion in the salt glands of Frankenia grandifolia (Frankeniaceae) and Avicennia germinans (Avicenniaceae). Am J Bot 80:1276–1283CrossRefGoogle Scholar
  7. Balsamo RA, Thomson WW (1996) Isolation of mesophyll and secretory cell protoplasts of the halophyte Ceratostigma plumbaginoides (L.): a comparison of ATPase concentration and activity. Plant Cell Rep 15:418–422CrossRefGoogle Scholar
  8. Bertorello AM, Zhu JK (2009) SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch Eur J Physiol 458:613–619CrossRefGoogle Scholar
  9. Bohnert HJ, Cushman JC (2000) The ice plant cometh—models for environmental stress tolerance. J Plant Growth Regul 19:334–346CrossRefGoogle Scholar
  10. Breckle S-W (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere. Springer, BerlinGoogle Scholar
  11. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360PubMedCrossRefGoogle Scholar
  12. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10PubMedCrossRefGoogle Scholar
  13. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963PubMedCrossRefGoogle Scholar
  14. Chen ZJ, Wang J, Tian L, Lee HS, Wang JJ, Chen M, Lee JJ, Josefsson C, Madlung A, Watson B, Lippman Z, Vaughn M, Pires JC, Colot V, Doerge RW, Martienssen RA, Comai L, Osborn TC (2004) The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biol J Linn Soc 82:689–700CrossRefGoogle Scholar
  15. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J; Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712Google Scholar
  16. Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769CrossRefGoogle Scholar
  17. Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332PubMedCrossRefGoogle Scholar
  18. Dalton FN, Maggio A, Piccinni G (2000) Simulation of shoot chloride accumulation: separation of physical and biochemical processes governing plant salt tolerance. Plant Soil 219:1–11CrossRefGoogle Scholar
  19. Dassanayake M, Oh DH, Haas J, Hernandez AG, Ali S, Hong H, Yun DJ, Bressan RA, Zhu J-K, Bohnert HJ, Cheeseman JM (2011a) The genome sequence of an extremophile Arabidopsis-relative: Thellungiella parvula. Nat Genet 43:913–918PubMedCrossRefGoogle Scholar
  20. Dassanayake M, Oh DH, Hong H, Bohnert HJ, Cheeseman JM (2011b) Importance of transcription control for halophytic life. Trends Plant Sci 16:1–3PubMedCrossRefGoogle Scholar
  21. Deng Z, Li Y, Xia R, Wang W, Huang X, Zhang L, Zhang S, Yang C, Zhang Y, Chen M, Xie Q (2009) Structural analysis of 83-kb genomic DNA from Thellungiella halophila: sequence features and micro-colinearity between salt cress and Arabidopsis thaliana. Genomics 94:324–332PubMedCrossRefGoogle Scholar
  22. Farnsworth E (2004) Hormones and shifting ecology throughout plant development. Ecology 85:5–15CrossRefGoogle Scholar
  23. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedCrossRefGoogle Scholar
  24. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  25. Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884CrossRefGoogle Scholar
  26. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121CrossRefGoogle Scholar
  27. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337CrossRefGoogle Scholar
  28. Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16:108–116PubMedCrossRefGoogle Scholar
  29. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453PubMedCrossRefGoogle Scholar
  30. Freitas H, Breckle S-W (1992) Importance of bladder hairs for salt tolerance of field-grown Atriplex species from a Portuguese salt marsh. Flora 187:283–297Google Scholar
  31. Glenn EP (1987) Relationship between cation accumulation and water content of salt tolerant grasses and a sedge. Plant Cell Environ 10:205–212Google Scholar
  32. Glenn EP, O’Leary J (1984) Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant Cell Environ 7:253–261Google Scholar
  33. Glenn E, Miyamoto S, Moore D, Brown J, Thompson T, Brown P (1985) Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J Arid Environ 36:711–730CrossRefGoogle Scholar
  34. Glenn E, O’Leary J, Watson M, Thompson T, Kuehl R (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251:1065–1067PubMedCrossRefGoogle Scholar
  35. Glenn EP, Watson MC, O’Leary JW, Axelson RD (1992) Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte, Atriplex canescens. Plant Cell Environ 15:711–718CrossRefGoogle Scholar
  36. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  37. Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedCrossRefGoogle Scholar
  38. Greenway H (1968) Growth stimulation by high chloride concentrations in halophytes. Isr J Bot 17:169–177Google Scholar
  39. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  40. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481PubMedCrossRefGoogle Scholar
  41. Inan G, Zhang H, Li P, Wang Z, Cao Z, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737PubMedCrossRefGoogle Scholar
  42. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119PubMedCrossRefGoogle Scholar
  43. Kato T, Emi M, Sato H, Arawaka S, Wada M, Kawanami T, Katagiri T, Tsuburaya K, Toyoshima I, Tanaka F, Sobue G, Matsubara K (2010) Segmental copy-number gain within the region of isopentenyl diphosphate isomerase genes in sporadic amyotrophic lateral sclerosis. Biochem Biophys Res Commun 402:438–442PubMedCrossRefGoogle Scholar
  44. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905PubMedGoogle Scholar
  45. Kramer PJ (1984) Problems in water relations of plants and cells. In: Kramer PJ (ed) International review of cytology, pp 254–286Google Scholar
  46. Kreeb K (1974) Pflanzen an Salzstandorten. Naturwissenschaften 61:337–343CrossRefGoogle Scholar
  47. Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:e1000223PubMedCrossRefGoogle Scholar
  48. Le Houerou HN (1993) Salt-tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, vol 1. Kluwer Academic Publishers, Dordrecht, pp 403–422Google Scholar
  49. Liphschitz N, Waisel Y (1982) Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen D, Rajpurohit K (eds) Tasks for vegetation science. Dr. W. Junk, The Hague, pp 197–214Google Scholar
  50. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819:129–136PubMedCrossRefGoogle Scholar
  51. Maggio A, Zhu JK, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557PubMedCrossRefGoogle Scholar
  52. Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282CrossRefGoogle Scholar
  53. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570PubMedCrossRefGoogle Scholar
  54. Mata-González R, Meléndez-González R, Martínez-Hernández JJ (2001) Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability. USDA Forest Service Proc RMRS-P-21, pp 308-311Google Scholar
  55. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefGoogle Scholar
  56. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222PubMedCrossRefGoogle Scholar
  57. Oh DH, Dassanayake M, Kropornika A, Paino d’Urzo M, Lambert G, Galbraith DW, Bressan RA, Zhu JK, Yun DJ, Cheeseman JM, Bohnert HJ (2010) Chromosome structures of the extreme halophyte Thellungiella parvula distinguished from Thellungiella salsuginea (T. halophila) and Arabidopsis thaliana. Plant Physiol 154:1040–1052PubMedCrossRefGoogle Scholar
  58. Ohno S (1970) Evolution by gene duplication. Springer, BerlinGoogle Scholar
  59. Oo KS, Lang NT (2005) Developing salt tolerance in rice by mutagenesis. Omonrice 13:126–134Google Scholar
  60. Orsini F, Paino D’Urzo M, Inan G, Serra S, Oh D-H, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun D-J, Bohnert HJ, Bressan RA, Maggio A (2010) Emerging new Arabidopsis-relative model systems (ARMS): a comparative study of salt tolerance parameters in eleven wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798PubMedCrossRefGoogle Scholar
  61. Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Ruiz Carrasco K, Martinez E, AlNayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831CrossRefGoogle Scholar
  62. Osmond CB, Bjorkman 0, Anderson DJ (1980) Physiological processes in plant ecology: towards a synthesis with Atriplex. In: Ecological studies, vol 36. Springer, New YorkGoogle Scholar
  63. Popp M (1995) Salt resistance in herbaceous halophytes and mangroves. Prog Bot 56:416–429CrossRefGoogle Scholar
  64. Popp M, Albert R (1995) The role of organic solutes in salinity adaptation of mangroves and herbaceous halophytes In: Ajmal Khan M, Ungar IA (eds) Biology of salt tolerant plants. University of Karachi, Pakistan, pp 139–149Google Scholar
  65. Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol, pp 1–7 (epub 5 January 2012)Google Scholar
  66. Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563PubMedCrossRefGoogle Scholar
  67. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  68. Rindos D (1987) The origins of agriculture: an evolutionary perspective. Academic Press, OrlandoGoogle Scholar
  69. Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, Difazio SP (2012) Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res 22:95–105PubMedCrossRefGoogle Scholar
  70. Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488CrossRefGoogle Scholar
  71. Schirmer U, Breckle S-W (1982) The role of bladders for salt removal in some Chenopodiaceae (mainly) Atriplex species. In: Sen DN, Rajpurohit KS (eds) T:VS 2 (tasks for vegetative science 2) contributions to the ecology of halophytes. Dr. W. Junk Publishers, Hague, pp 215–231Google Scholar
  72. Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52PubMedCrossRefGoogle Scholar
  73. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699PubMedCrossRefGoogle Scholar
  74. Tarasoft CS, Mallory-Smith CA, Ball DA (2007) Comparative plant responses of Puccinellia distans and Puccinellia nuttalliana to sodic versus normal soil types. J Arid Environ 70:403–417CrossRefGoogle Scholar
  75. Tuskan GA, Di Fazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  76. Ungar IA, Pfeiffer CJ (1991) Ecophysiology of vascular halophytes. CRC Press, Boca Raton, p 209Google Scholar
  77. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89PubMedCrossRefGoogle Scholar
  78. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353PubMedCrossRefGoogle Scholar
  79. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835PubMedCrossRefGoogle Scholar
  80. Wang W, Wu Y, Li Y, Xie J, Zhang Z, Deng Z, Zhang Y, Yang C, Lai J, Zhang H, Bao H, Tang S, Yang C, Gao P, Xia G, Guo H, Xie Q (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99PubMedCrossRefGoogle Scholar
  81. Waszak SM, Hasin Y, Zichner T, Olender T, Keydar I, Khen M, Stütz AM, Schlattl A, Lancet D, Korbel JO (2010) Systematic inference of copy-number genotypes from personal genome sequencing data reveals extensive olfactory receptor gene content diversity. PLoS Comput Biol 6:e1000988PubMedCrossRefGoogle Scholar
  82. Waterhouse RM, Zdobnov EM, Kriventseva EV (2011) Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi. Genome Biol Evol 3:75–86PubMedCrossRefGoogle Scholar
  83. Yang HM, Zhang JH, Zhang XY (2005) Regulation mechanisms of stomatal oscillation. J Integr Plant Biol 47:1159–1172CrossRefGoogle Scholar
  84. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948PubMedCrossRefGoogle Scholar
  85. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer 2012

Authors and Affiliations

  • Ray A. Bressan
    • 1
    • 2
    • 3
  • Hyeong Cheol Park
    • 2
  • Francesco Orsini
    • 4
  • Dong-ha Oh
    • 2
    • 5
  • Maheshi Dassanayake
    • 5
  • Gunsu Inan
    • 6
  • Dae-Jin Yun
    • 2
  • Hans J. Bohnert
    • 2
    • 3
    • 5
    • 7
  • Albino Maggio
    • 8
    Email author
  1. 1.Horticulture DepartmentPurdue UniversityW. LafayetteUSA
  2. 2.Division of Applied Life SciencesGyeongsang National UniversityJinjuKorea
  3. 3.College of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Agro-environmental Sciences and TechnologiesUniversity of BolognaBolognaItaly
  5. 5.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.Institute of BiotechnologyUniversity of AnkaraAnkaraTurkey
  7. 7.Department of Crop ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  8. 8.Department of Agricultural Engineering and AgronomyUniversity of Naples Federico IIPorticiItaly

Personalised recommendations