Cultural conditions affect somatic embryogenesis in Catharanthus roseus L. (G.) Don

  • Junaid Aslam
  • A. MujibEmail author
  • Samar Fatima
  • M. P. Sharma
Original Article


We established an efficient plant regeneration system for Catharanthus roseus L. (G.) Don through somatic embryogenesis. Embryogenic callus was induced from hypocotyl of seed germinated in vitro. Somatic embryogenesis in Catharanthus has been categorized into three distinct stages: (1) initiation and proliferation of embryo; (2) maturation, and; (3) germination or plantlet conversion. Beside plant growth regulators, various stages of embryogenesis were screened for their response to a wide variety of factors (pH, gelrite, light, sugar alcohols, polyethyleneglycol and amino acids), which affect embryogenesis. All of the tested factors had a small to marked influence on embryogeny and eventual conversion to plantlets. The plantlets were acclimatized successfully in a greenhouse. To our knowledge, this is the first report describing a detailed study of various cultural factors which regulate embryogenesis in C. roseus. The results discussed in this paper may be used in mass propagation to produce medicinal raw material, and the embryo precursor cells could be used in genetic modification programmes that aim to improve the alkaloid yield as well.


Catharanthus roseus Cultural conditions Plant growth regulators Somatic embryogenesis 



N 6-benzyladenine


2,4-Dichlorophenoxyacetic acid


α-Naphthalene acetic acid


Gibberellic acid


Polyethylene glycol


Murashige and Skoog’s medium


Somatic embryo


Duncan’s multiple range test



The AFMI Fellowship provided by AFMI to one of us (Dr. A. Junaid) is gratefully acknowledged.


  1. Bajaj YPS (1995) Somatic embryogenesis and its applications for crop improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, somatic embryogenesis and synthetic seed. I. Springer, Berlin, pp 105–125Google Scholar
  2. Bhansali RR, Driver JA, Durzan DJ (1990) Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep 9:280–284CrossRefGoogle Scholar
  3. Blanc G, Michaux-Ferriere N, Teisson C, Lardet L, Carron MP (1999) Effect of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tissue Organ Cult 59:103–112CrossRefGoogle Scholar
  4. Bozhkov PV, Von Arnold S (1998) Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plant 104:211–224CrossRefGoogle Scholar
  5. Brown DCW, Finstad KI, Watson EM (1995) Somatic embryogenesis in herbaceous dicots. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 345–415Google Scholar
  6. Cabasson C, Ollitrault P, Cote FX, Michaux-Ferriére N, Dambier D, Dalnic R, Teisson C (1995) Characteristic of citrus cell cultures during undifferentiated growth on sucrose and somatic embryogenesis on galactose. Physiol Plant 93:464–470Google Scholar
  7. Chang YF, Wong JR (1994) Regeneration of plants from protoplasts of Triticum aestivum L. (Wheat). In: Bajaj YPS (ed) Plant protoplasts and genetic engineering V (Biotechnology in agriculture and forestry, vol 29). Springer, Berlin, pp 161–171Google Scholar
  8. Cheong EJ, Pooler MR (2004). Factors affecting somatic embryogenesis in Prunus incisa cv. February Pink. Plant Cell Rep 22:810–815PubMedCrossRefGoogle Scholar
  9. Choi YE, Yang DC, Choi KT (1998) Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell Tissue Organ Cult 52:177–181CrossRefGoogle Scholar
  10. De March G, Grenier E, Miannay N, Sulmont G, David H, David A (1993) Potential of somatic embryogenesis in Prunus avium immature zygotic embryos. Plant Cell Tissue Organ Cult 34:209–215CrossRefGoogle Scholar
  11. Druart P (1981) Embryogenese somatique et obtention de plantules chez Prunus incise x serrula (GM 9) cultive in vitro. Bull Rech Agron Gembloux 16:205–220Google Scholar
  12. Fiore MC, Trabace T, Sunseri F (1997) High frequency of plant regeneration in sunflower from cotyledons via somatic embryogenesis. Plant Cell Rep 16:295–298Google Scholar
  13. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg 43:27–47CrossRefGoogle Scholar
  14. Gray DJ, Compton ME, Harrell RC, Cantliffe DJ (1995) Somatic embryogenesis and the technology of synthetic seed. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, somatic embryogenesis and seed I, vol 30. Springer, Berlin, pp 126–151Google Scholar
  15. Gupta PK, Grobe JA (1995) Somatic embryogenesis in conifer. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer, Dordrecht, pp 81–98Google Scholar
  16. Holme IB, Krogstrup P, Hansen J (1997) Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus x ogiformis Honda Giganteus as affected by proline. Plant Cell Tissue Organ Cult 50:203–210CrossRefGoogle Scholar
  17. Huang LC, Vits H, Staba EJ, Cooke TJ, Hu WS (1992) Effect of cultivated age and embryo size on specific oxygen uptake rate in developing somatic embryos of Daucus carota L. Biotechol Lett 14:701–706CrossRefGoogle Scholar
  18. Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114PubMedCrossRefGoogle Scholar
  19. Jimenez VM (1996) El Cultivo de protoplastos en citricos y su potencial para el mejoramiento genetico. Agron Costarric 20:187–204Google Scholar
  20. Junaid A, Bhat MA, Mujib A, Sharma MP (2004). Somatic embryogenesis study in Catharanthus roseus (L.) G. Don: an anticancerous plant. In: Khan IA, Khanum A (eds) Role of biotechnology in medicinal and aromatic plants, vol XI. Ukaaz, Hyderabad, pp 98–106Google Scholar
  21. Junaid A, Bhatt MA, Mujib A, Sharma MP (2006) Somatic embryo proliferation maturation and germination in Catharanthus roseus. Plant Cell Tissue Organ Cult 84:325–332CrossRefGoogle Scholar
  22. Junaid A, Mujib A, Sharma MP, Tang W (2007a) Growth regulators affect primary and secondary somatic embryogenesis in Madagaskar periwinkle (Catharanthus roseus (L) G. Don) at morphological and biochemical levels. Plant Growth Regul 51:271–281CrossRefGoogle Scholar
  23. Junaid A, Mujib A, Bhat MA, Sharma MP, Šamaj J (2007b) Somatic embryogenesis and plant regeneration in Catharanthus roseus. Biol Plant 51(4):641–646CrossRefGoogle Scholar
  24. Kevei E, Nagy F (2003) Phytochrome controlled signaling cascades in higher plants. Physiol Plant 117:305–313PubMedCrossRefGoogle Scholar
  25. Koh WL, Loh CS (2000) Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid-cycling Brassica napus. Plant Cell Rep 19:1177–1183CrossRefGoogle Scholar
  26. Krikorian AD, Berquam D (1969) Plant cell and tissue culture: the role of Haberlandt. Bot Rev 35:58–88CrossRefGoogle Scholar
  27. Linossier L, Veisseire P, Cailloux F, Coudret A (1997) Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124:183–191CrossRefGoogle Scholar
  28. Lipavská H, Konrádová H (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol Plant 40:23–30CrossRefGoogle Scholar
  29. Machado AC, Puschmann M, Puhringer H, Kremen R, Katinger H, Machado MLC (1995) Somatic embryogenesis of Prunus subhirtella ‘autumno rosa’ and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep 14:335–340CrossRefGoogle Scholar
  30. Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad tidings. Plant Sci 120:95–105Google Scholar
  31. Maruyama E, Hosoi Y, Ishii K (2002) Somatic embryogenesis in sawara cypress (Chamaecyparis pisifera Sieb. Et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J For Res 7:23–34CrossRefGoogle Scholar
  32. Mujib A, Samaj J (2006) Somatic embryogenesis. Springer, BerlinGoogle Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  34. Nato A, Fresneau C, Moursalimowa N, De Buyser J, Lavergne D, Henry Y (2000) Expression of auxin and light regulated arrestin-like proteins, G proteins and nucleoside diphosphate kinase during induction and development of wheat somatic embryos. Plant Physiol Biochem 38:483–490CrossRefGoogle Scholar
  35. Norgaard JV (1997) Somatic embryo maturation and plant regeneration in Abies nordmanniana LK. Plant Sci 124:211–221CrossRefGoogle Scholar
  36. Nuutila AM, Villiger C, Oksman-Caldentey KM (2002) Embryogenesis and regeneration of green plantlets from oat (Avena sativa L.) leaf-base segments: influence of nitrogen balance, sugar and auxin. Plant Cell Rep 20:1156–1161CrossRefGoogle Scholar
  37. Ochatt SJ, Pontecaille C, Rancillac M (2000) The growth regulators used for bud regeneration and shoot rooting affect the competence for flowering and seed set in regenerated plants of protein peas. In Vitro Cell Dev Biol Plant 36:188–193Google Scholar
  38. Owen HR, Wengerd D, Miller AR (1991) Culture medium pH is influenced by basal medium, carbohydrate source, gelling agent, activated charcoal and medium storage method. Plant Cell Rep 10:583–586CrossRefGoogle Scholar
  39. Pan ZG, Liu CZ, Murch SJ, El-Demerdash M, Saxena PK (2003) Plant regeneration from mesophyll protoplasts of the Egyptian medicinal plants Artemisia judaica L. and Echinops spinosissimus Turra. Plant Sci 165:681–687CrossRefGoogle Scholar
  40. Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxins, pH, and stress in the activation of embryogenic cell division in leaf protoplast derived cells of alfalfa. Plant Physiol 129:1807–1819PubMedCrossRefGoogle Scholar
  41. Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in Eucalyptus globules Labill. Plant Cell Rep 21:208–213CrossRefGoogle Scholar
  42. Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452PubMedCrossRefGoogle Scholar
  43. Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparision of somatic and zygotic embryo morphology, germination and gene expression. Plant Cell Rep 21:747–758PubMedGoogle Scholar
  44. Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24:271–279PubMedCrossRefGoogle Scholar
  45. Ramage CM, Williams RR (2004) Cytokinin induced abnormal shoot regeneration is associated with elevated knottedl—type homeobox gene expression in tobacco. Plant Cell Rep 22:919–924PubMedCrossRefGoogle Scholar
  46. Redenbaugh K (1993) Synseeds. Application of synthetic seeds to crop improvement. CRC Press, Boca Raton, FLGoogle Scholar
  47. Reidiboym-Talleux L, Diemer F, Sourdioux M, Chapelain K, Grenier-DeMarch G (1998) Improvement of somatic embryogenesis in wild cherry (Prunus avium). Effect of maltose and ABA supplements. Plant Cell Tissue Organ Cult 55:199–209CrossRefGoogle Scholar
  48. Rey HY, Sansberro PA, Collavino MM, Daviña JR, Gonzàlez AM, Mroginski LA (2002) Colchicine, trifluralin and oryzalin promoted development of somatic embryos in Ilex paraguariensis (Aquifoliaceae). Euphytica 123:49–56CrossRefGoogle Scholar
  49. Robichaud RL, Lessard VC, Merkle SA (2004) Treatments affecting maturation and germination of American chestnut somatic embryos. J Plant Physiol 161:957–969PubMedCrossRefGoogle Scholar
  50. Schuller A, Reuther G (1993) Response of Abies alba embryonal- suspensor mass to various carbohydrate treatments. Plant Cell Rep 12:199–202CrossRefGoogle Scholar
  51. Scott P, Lyne RL (1994) The effect of different carbohydrate sources upon the initiation of embryogenesis from barley microspores. Plant Cell Tissue Organ Cult 36:129–133CrossRefGoogle Scholar
  52. Smith DL, Krikorian AD (1990) Somatic embryogenesis of carrot in hormone- free medium: external pH control over morphogenesis. Am J Bot 77:1634–1647PubMedCrossRefGoogle Scholar
  53. Strickland SG, Nichol JW, McCall CM, Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48:113–121CrossRefGoogle Scholar
  54. Taniguchi T, Kurita M, Itahana N, Kondo T (2004) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Hinoki cypress (Chamaecyparis obtuse Sieb. et Zucc.). Plant Cell Rep 23:26–31PubMedCrossRefGoogle Scholar
  55. Thorpe TA (1995) In vitro embryogenesis in plants. Kluwer, DordrechtGoogle Scholar
  56. Torne JM, Moysset L, Santos M, Simon E (2001) Effects of light quality on somatic embryogenesis in Araujia sercifera. Physiol Plant 111:405–411PubMedCrossRefGoogle Scholar
  57. Van Winkle SC, Johnson S, Pullman GS (2003) The impact of gelrite and activated carbon on the elemental composition of two conifer embryogenic tissue initiation media. Plant Cell Rep 21:1175–1182PubMedCrossRefGoogle Scholar
  58. Verma DC, Dougall DK (1997) Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures. Plant Physiol 59:81–85CrossRefGoogle Scholar
  59. Xing Z, Powell WA, Maynard CA (1999) Development and germination of American chestnut somatic embryos. Plant Cell Tissue Organ Cult 57:47–55CrossRefGoogle Scholar

Copyright information

© Korean Society for Plant Biotechnology and Springer 2008

Authors and Affiliations

  • Junaid Aslam
    • 1
  • A. Mujib
    • 1
    Email author
  • Samar Fatima
    • 1
  • M. P. Sharma
    • 1
  1. 1.Cellular Differentiation and Molecular Genetics Section, Department of BotanyHamdard UniversityNew DelhiIndia

Personalised recommendations