Skip to main content

Advertisement

Log in

Strategies and mechanisms of plant virus resistance

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Virus-induced diseases are responsible for major crop losses worldwide. A better understanding of plant defense mechanisms would lead to the development of novel strategies for effective plant protection. Early protein-based approaches relied mostly on the expression of transgenic coat protein (CP) to block the progression of the virus infectious process. Other strategies exploit the plant’s innate defense mechanisms to combat invading viral pathogens. For example, the RNA-based resistance makes use of the plant post-transcriptional gene silencing (PTGS) mechanism to degrade viral RNAs. In cross-protection the prior inoculation with a mild viral strain confers resistance against a severe strain. Although the molecular detail of cross-protection is not fully understood, it is likely to be comprised of both protein- and RNA-based mechanisms, as well as some other unknown processes. In this review article we compare the benefits and challenges of these different viral-resistance approaches. Furthermore, we discuss the development of a new approach based on the plant’s miRNA pathway. Artificial miRNAs with sequences complementary to viral sequences have been successfully used to generate virus resistance. This novel anti-viral strategy, which has the advantage of reducing possible bio-safety risks associated with protein- and RNA-based strategies, is a first step toward designing environmentally friendly virus resistance in transgenic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaziz R, Tepfer M (1999) Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol 80:1339–1346

    PubMed  CAS  Google Scholar 

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins FJ, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JP, Pekker, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Anderson EJ, Stark DM, Nelson RS, Tumer NE, Beachy RN (1989) Transgenic plants that express the coat protein genes of tobacco mosaic virus or alfalfa mosaic virus interfere with disease development of some nonrelated viruses. Phytopathology 79:1284–1290

    CAS  Google Scholar 

  • Anderson JM, Palukaitis P, Zaitlin M (1992) A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Natl Acad Sci USA 89:8759–8763

    Article  PubMed  CAS  Google Scholar 

  • Bancroft JB (1970) Plant virus structure. Adv Virus Res 16:99–134

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Asurmendi S, Hopp HE, Beachy RN (2006) Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J Gen Virol 87:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN (1999) Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philos Trans R Soc Lond B Biol Sci 354:659–664

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane M, Fitchen JH, Zhang G, Beachy RN (1997) Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance. J Virol 71:7942–7950

    PubMed  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792

    Article  PubMed  CAS  Google Scholar 

  • Bian XY, Rasheed MS, Seemanpillai MJ, Ali Rezaian M (2006) Analysis of silencing escape of tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe Interact 19:614–624

    Article  PubMed  CAS  Google Scholar 

  • Bonnet E, Van de Peer Y, Rouze P (2006) The small RNA world of plants. New Phytol 171:451–468

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  PubMed  CAS  Google Scholar 

  • Brommonschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  PubMed  CAS  Google Scholar 

  • Caspar DLD (1963) Assembly and stability of the Tobacco mosaic tobamovirus particle. Adv Protein Chem 18:37–121

    PubMed  CAS  Google Scholar 

  • Chiang CH, Lee CY, Wang CH, Jan FJ, Lin SS, Chen TC, Raja JAJ, Yeh SD (2007) Genetic analysis of an attenuated papaya ringspot virus strain applied for cross protection. Eur J Plant Pathol (Accepted)

  • Covey SN, Al-Kaff NS, Langara A, Turner DS (1997) Plants combat infection by gene silencing. Nature 385:781–782

    Article  CAS  Google Scholar 

  • Culver JN (1996) Tobamovirus cross protection using a potexvirus vector. Virology 226:228–235

    Article  PubMed  CAS  Google Scholar 

  • Culver JN (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40:287–308

    Article  PubMed  CAS  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  PubMed  CAS  Google Scholar 

  • de Zoeten GA, Gaard G (1984) The presence of viral antigen in the apoplast of systemically virus-infected plants. Virus Res 1:713–725

    Article  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  PubMed  CAS  Google Scholar 

  • Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829

    Article  Google Scholar 

  • Dietrich C, Maiss E (2003) Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol 84:2871–2876

    Article  PubMed  CAS  Google Scholar 

  • Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C (2002) The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 32:927–934

    Article  PubMed  CAS  Google Scholar 

  • Falk BW, Bruening G (1994) Will transgenic crops generate new viruses and new diseases? Science 263:13959–11396

    Article  Google Scholar 

  • Fortier E, Belote JM (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26:240–244

    Article  PubMed  CAS  Google Scholar 

  • Fritsch C, Stussi C, Witz J, Hirth L (1973) Specificity of TMV RNA encapsidation: in vitro coating of heterologous RNA by TMV protein. Virology 56:33–45

    Article  PubMed  CAS  Google Scholar 

  • Fulton RW (1951) Superinfection by strains of Tobacco mosaic virus. Phytopathology 41:579–592

    Google Scholar 

  • Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–473

    Article  CAS  PubMed  Google Scholar 

  • Gal-On A, Shiboleth YM (2006) Cross-protection. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plant to viruses. Springer, Berlin, pp 261–288

    Chapter  Google Scholar 

  • Goregaoker SP, Eckhardt LG, Culver JN (2000) Tobacco mosaic virus replicase-mediated cross-protection: contributions of RNA and protein-derived mechanisms. Virology 273:267–275

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S (2006) The microRNA registry. Nucleic Acids Res 32(Database issue):D109–111

    Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Hammond J, Lecoq H, Raccah B (1999) Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Adv Virus Res 54:189–314

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 81:2103–2109

    PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Kameda T, Ikegami K, Liu Y, Terada K, Sugiyama T (2004) A hypothermic-temperature-sensitive gene silencing by the mammalian RNAi. Biochem Biophys Res Commun 315:599–602

    Article  PubMed  CAS  Google Scholar 

  • Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    Article  PubMed  CAS  Google Scholar 

  • Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C (2006) Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol 151:2111–2122

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  • Lecoq H, Raccah B (2001) Cross-protection: interactions between strains exploited to control plant virus diseases. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant pathogen associations. CAB International, Wallingford, pp 177–192

    Google Scholar 

  • Lecoq H, Lemaire JM, Wipf-Scheibel C (1991) Control of zucchini yellow mosaic virus in squash by cross protection. Plant Dis 75:208–211

    Article  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J, Cai S, Ma J (2006) Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun 348:229–237

    Article  PubMed  CAS  Google Scholar 

  • Lin SS, Wu HW, Jan FJ, Hou RF, Yeh SD (2007) Modifications of the HC-Pro of zucchini yellow mosaic potyvirus for generation of attenuated mutants for cross protection against severe infection. Phytopathology 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L (2006) Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol 80:5841–5853

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Stubbs G, Culver JN (1998) Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 248:188–198

    Article  PubMed  CAS  Google Scholar 

  • McKinney HH (1929) Mosaic diseases in Canary Islands, West Africa, and Gibraltar. J Agric Res 39:557–578

    Google Scholar 

  • Moissiard G, Voinnet O (2006) RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA 103:19593–19598

    Article  PubMed  CAS  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    Article  PubMed  CAS  Google Scholar 

  • Muller GW, Costa AS (1977) Tristeza control in Brazil by preimmunization with mild strains. Proc Int Soc Citric 3:868–872

    Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotech 24:1420–1428

    Article  CAS  Google Scholar 

  • Noris E, Lucioli A, Tavazza R, Caciagli P, Accotto GP, Tavazza M (2004) Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J Gen Virol 85:1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Palukaitis P, Zaitlin M (1997) Replicase-mediated resistance to plant virus disease. Adv Virus Res 48:349–377

    PubMed  CAS  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  PubMed  CAS  Google Scholar 

  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21:373–375

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial miRNA-mediated virus resistance in plants. J Virol doi:10.1128/JVI.02457–06

  • Rast ATB (1972) MII-16, an artificial symptomless mutant of tobacco mosiac virus for seedling inoculation of tomato crops. North J Plant Pathol 78:110–112

    Article  Google Scholar 

  • Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Register JCr, Beachy RN (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166:524–532

    Article  Google Scholar 

  • Ribeiro SG, Lohuis H, Goldbach R, Prins M (2007) Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 81:1563–1537

    Article  PubMed  CAS  Google Scholar 

  • Rubio T, Borja M, Scholthof HB, Jackson AO (1999) Recombination with host transgenes and effects on virus evolution: an overview and opinion. Mol Plant Microbe Interact 12:87–92

    Article  CAS  Google Scholar 

  • Rudolph C, Schreier PH, Uhrig JF (2003) Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci USA 100:4429–4434

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of pathogen derived resistance: deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Sarkar S, Smitamana P (1981) A proteinless mutant of tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Mol Gen Genet 184:158–159

    Article  PubMed  CAS  Google Scholar 

  • Schuster TM, Scheele RB, Adams ML, Shire SJ, Steckert JJ, Potschka M (1980) Studies on the mechanism of assembly of tobacco mosaic virus. Biophys J 32:313–329

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Shaw JG, Plaskitt KA, Wilson TM (1986) Evidence that tobacco mosaic virus particles disassemble contranslationally in vivo. Virology 148:326–336

    Article  CAS  PubMed  Google Scholar 

  • Sherwood JL, Fulton RW (1982) The specific involvement of coat protein in tobacco mosaic virus cross protection. Virology 119:150–158

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Thillaichidambaram P, Balaji V, Veluthambi K (2006) Expression of full-length and truncated Rep genes from mungbean yellow mosaic virus-Vigna inhibits viral replication in transgenic tobacco. Virus Genes 33:365–374

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Gallie DR, Watts JW, Deom CM, Turner PC, Beachy RN, Wilson TM (1988) Selective recovery of foreign gene transcripts as virus-like particles in TMV-infected transgenic tobaccos. Nucleic Acids Res 16:3127–3140

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol 40:467–491

    Article  PubMed  CAS  Google Scholar 

  • Uhrig JF (2003) Response to Prins: broad virus resistance in transgenic plants. Trends Biotechnol 21:376–377

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Voloudakis AE, Aleman-Verdaguer ME, Padgett HS, Beachy RN (2005) Characterization of resistance in transgenic Nicotiana benthamiana encoding N-terminal deletion and assembly mutants of the Tobacco etch potyvirus coat protein. Arch Virol 150:2567–2582

    Article  PubMed  CAS  Google Scholar 

  • Wu XJ, Beachy RN, Wilson TM, Shaw JG (1990) Inhibition of uncoating of tobacco mosaic virus particles in protoplasts from transgenic tobacco plants that express the viral coat protein gene. Virology 179:893–895

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci USA 98:6516–6521

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:642–652

    Article  Google Scholar 

  • Yang L, Liu Z, Lu F, Dong A, Huang H (2006) Serrate is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    Article  PubMed  CAS  Google Scholar 

  • Yeh SD, Gonsalves D (1984) Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74:1086–1091

    Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  • Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR (2005) Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11:220–226

    Article  PubMed  CAS  Google Scholar 

  • Yoon JY, Ahn HI, Kim M, Tsuda S, Ryu KH (2006) Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Res 118:23–30

    Article  PubMed  CAS  Google Scholar 

  • Zaitlin M (1976) Viral cross-protection: more understanding is need. Phytopathology 66:382–383

    Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknoweledgments

We thank Drs. Enno Krebbers, Richard Broglie, Karen Broglie and Barbara Mazur for helpful suggestions and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hai Chua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SS., Henriques, R., Wu, HW. et al. Strategies and mechanisms of plant virus resistance. Plant Biotechnol Rep 1, 125–134 (2007). https://doi.org/10.1007/s11816-007-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-007-0021-8

Keywords

Navigation