Abstract
The quest for a carbon–neutral energy future has positioned hydrogen as a pivotal player in global-sustainability efforts. This comprehensive review examines the transformative role of hydrogen in revolutionizing sustainable energy consumption. Hydrogen’s high energy density, versatility, and minimal ecological footprint make it ideal for stabilizing the intermittent nature of renewable energy sources. This study evaluates the latest advancements in hydrogen production technologies, including advanced electrolysis, reforming strategies, and biologic processes, assessing their operational efficiencies and environmental impacts. In addition, it explores the strategic deployment of hydrogen in transportation, industrial processes, and electricity sectors, highlighting its potential to significantly reduce fossil-fuel dependence and mitigate climate change. The economic considerations and policy imperatives crucial for the global adoption and scaling of hydrogen storage systems are also discussed. This review underscores hydrogen’s critical role in creating an eco-efficient and resilient energy infrastructure, advocating for an accelerated transition to hydrogen-based solutions to achieve a cleaner, greener planet.
Similar content being viewed by others
Data availability
Data will be available on the reasonable request.
References
Q. Hassan, P. Viktor, T.J. Al-Musawi, B.M. Ali, S. Algburi, H.M. Alzoubi, A.K. Al-Jiboory, A.Z. Sameen, H.M. Salman, M. Jaszczur, The renewable energy role in the global energy transformations. Renew. Energy Focus 48, 100545 (2024)
J. Hwang, K. Maharjan, H. Cho, A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges. Int. J. Hydrogen Energy 48(74), 28629–28648 (2023)
S.U. Batgi, I. Dincer, A study on comparative environmental impact assessment of thermochemical cycles and steam methane reforming processes for hydrogen production processes. Comput. Chem. Eng. 180, 108514 (2024)
C. Bento, T.F. Lopes, P. Rodrigues, F. Gírio, C. Silva, Biogas reforming as a sustainable solution for hydrogen production: comparative environmental metrics with steam-methane reforming and water electrolysis in the Portuguese context. Int. J. Hydrogen Energy 66, 661–675 (2024)
S.G. Nnabuife, C.K. Darko, P.C. Obiako, B. Kuang, X. Sun, K. Jenkins, A comparative analysis of different hydrogen production methods and their environmental impact. Clean Technol 5(4), 1344–1380 (2023)
B. Azizimehr, T. Armaghani, R. Ghasemiasl, A.K. Nejadian, M.A. Javadi, A comprehensive review of recent developments in hydrogen production methods using a new parameter. Int. J. Hydrogen Energy 72, 716–729 (2024)
F. Qureshi, M. Yusuf, H. Ibrahim, H. Kamyab, S. Chelliapan, C.Q. Pham, D.-V.N. Vo, Contemporary avenues of the hydrogen industry: opportunities and challenges in the eco-friendly approach. Environ. Res. 229, 115963 (2023)
M. Aravindan, V. Hariharan, T. Narahari, A. Kumar, K. Madhesh, P. Kumar, R. Prabakaran, Fuelling the future: a review of non-renewable hydrogen production and storage techniques. Renew. Sustain. Energy Rev. 188, 113791 (2023)
M. El-Shafie, Hydrogen production by water electrolysis technologies: a review. Results Eng. 20, 101426 (2023)
A. Arsad, M. Hannan, A.Q. Al-Shetwi, R. Begum, M. Hossain, P.J. Ker, T.I. Mahlia, Hydrogen electrolyser technologies and their modelling for sustainable energy production: a comprehensive review and suggestions. Int. J. Hydrogen Energy 48(72), 27841–27871 (2023)
Y. Wang, G. Xiao, S. Wang, H. Su, Application of nanomaterials in dark or light-assisted fermentation for enhanced biohydrogen production: a mini-review. Bioresour. Technol. Rep. 21, 101295 (2023)
N.J. Rubinsin, N.A. Karim, S.N. Timmiati, K.L. Lim, W.N.R.W. Isahak, M. Pudukudy, An overview of the enhanced biomass gasification for hydrogen production. Int. J. Hydrogen Energy 49, 1139–1164 (2023)
N. Wu, K. Lan, Y. Yao, An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. Resour. Conserv. Recycl. 188, 106693 (2023)
S. Bosu, N. Rajamohan, Recent advancements in hydrogen storage-comparative review on methods, operating conditions and challenges. Int. J. Hydrogen Energy 52, 352–370 (2024)
M. Krichen, Y. Basheer, S.M. Qaisar, A. Waqar, A survey on energy storage: techniques and challenges. Energies 16(5), 2271 (2023)
D. Wang, N. Liu, F. Chen, Y. Wang, J. Mao, Progress and prospects of energy storage technology research: BASED on multidimensional comparison. J Energy Storage 75, 109710 (2024)
I. Samylingam, K. Kadirgama, N. Aslfattahi, L. Samylingam, D. Ramasamy, W. Harun, M. Samykano, R. Saidur, Review on thermal energy storage and eutectic nitrate salt melting point. In IOP Conference Series: Materials Science and Engineering. IOP Publishing (2021)
Q. Hassan, A.Z. Sameen, H.M. Salman, M. Jaszczur, A.K. Al-Jiboory, Hydrogen energy future: advancements in storage technologies and implications for sustainability. J Energy Storage 72, 108404 (2023)
F. Qureshi, M. Yusuf, M.A. Khan, H. Ibrahim, B.C. Ekeoma, H. Kamyab, M.M. Rahman, A.K. Nadda, S. Chelliapan, A State-of-The-Art Review on the Latest trends in Hydrogen production, storage, and transportation techniques. Fuel 340, 127574 (2023)
D. Tang, G.-L. Tan, G.-W. Li, J.-G. Liang, S.M. Ahmad, A. Bahadur, M. Humayun, H. Ullah, A. Khan, M. Bououdina, State-of-the-art hydrogen generation techniques and storage methods: a critical review. J. Energy Storage 64, 107196 (2023)
B.S. Zainal, P.J. Ker, H. Mohamed, H.C. Ong, I. Fattah, S.A. Rahman, L.D. Nghiem, T.I. Mahlia, Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 189, 113941 (2024)
S.O. Bade, O.S. Tomomewo, A. Meenakshisundaram, P. Ferron, B.A. Oni, Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: a review. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.08.157
I. Rolo, V.A. Costa, F.P. Brito, Hydrogen-based energy systems: current technology development status, opportunities and challenges. Energies 17(1), 180 (2023)
F. Zhang, P. Zhao, M. Niu, J. Maddy, The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 41(33), 14535–14552 (2016)
M.L. Murray, E.H. Seymour, R. Pimenta, Towards a hydrogen economy in Portugal. Int. J. Hydrogen Energy 32(15), 3223–3229 (2007)
I. Iordache, A.V. Gheorghe, M. Iordache, Towards a hydrogen economy in Romania: statistics, technical and scientific general aspects. Int. J. Hydrogen Energy 38(28), 12231–12240 (2013)
U.Y.J.E. Qazi, Future of hydrogen as an alternative fuel for next-generation industrial applications; challenges and expected opportunities. Energies 15(13), 4741 (2022)
A. Oni, K. Anaya, T. Giwa, G. Di Lullo, A. Kumar, Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conv. Manage. 254, 115245 (2022)
H. Ozcan, R.S. El-Emam, B.A. Horri, Thermochemical looping technologies for clean hydrogen production–current status and recent advances. J. Clean. Prod. 382, 135295 (2022)
E. Daneshvar, R.J. Wicker, P.-L. Show, A. Bhatnagar, Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–a review. Chem. Eng. J. 427, 130884 (2022)
I. Dincer, C. Zamfirescu, Sustainable energy systems and applications, in District Energy Systems. (Springer Science and Business, Boston, MA, 2011), pp.389–429
S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 43, 1151–1158 (2015)
J.M. Ogden, Review of small stationary reformers for hydrogen production. Report to the international energy agency. 2001. 609
S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art catalysts for CH4 steam reforming at low temperature. Int. J. Hydrogen Energy 39(5), 1979–1997 (2014)
R. Kothari, D. Buddhi, R. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 12(2), 553–563 (2008)
M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U. Farooqi, C. Lee, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 47(77), 33112–33134 (2022)
T.N. Do, H. Kwon, M. Park, C. Kim, Y.T. Kim, J.J.E.C. Kim, Carbon-neutral hydrogen production from natural gas via electrified steam reforming: Techno-economic-environmental perspective. Energy Convers Manag. 279, 116758 (2023)
L. Samylingam, N. Aslfattahi, C.K. Kok, K. Kadirgama, N. Sazali, M. Schmirler, D. Ramasamy, W.S.W. Harun, M. Samykano, A. Veerendra, Green engineering with nanofluids: elevating energy efficiency and sustainability. J. Adv. Res. Micro Nano Eng. 16(1), 19–34 (2024)
N. Chalkiadakis, E. Stamatakis, M. Varvayanni, A. Stubos, G. Tzamalis, T.J.E. Tsoutsos, A new path towards sustainable energy transition: techno-economic feasibility of a complete hybrid Small Modular Reactor/Hydrogen (SMR/H2) energy system. Energies 16(17), 6257 (2023)
A. Oni, K. Anaya, T. Giwa, G. Di Lullo, A. Kumar, Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manage. 254, 115245 (2022)
F.R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, D.L. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32(2), 172–184 (2007)
R. Chaubey, S. Sahu, O.O. James, S. Maity, A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 23, 443–462 (2013)
N. Martinez-Perez, S. Cherryman, G.C. Premier, R.M. Dinsdale, D.L. Hawkes, F.R. Hawkes, G. Kyazze, A.J. Guwy, The potential for hydrogen-enriched biogas production from crops: scenarios in the UK. Biomass Bioenerg. 31(2–3), 95–104 (2007)
I. Dincer, C. Acar, A review on clean energy solutions for better sustainability. Int. J. Energy Res. 39(5), 585–606 (2015)
A. Guwy, R. Dinsdale, J. Kim, J. Massanet-Nicolau, G. Premier, Fermentative biohydrogen production systems integration. Biores. Technol. 102(18), 8534–8542 (2011)
Y. Wang, Y. Liu, Z. Xu, K. Yin, Y. Zhou, J. Zhang, P. Cui, S. Ma, Y. Wang, Z.J.R. Zhu, S.E. Reviews, A review on renewable energy-based chemical engineering design and optimization. Renew. Sustain. Energy Rev. 189, 114015 (2024)
C. Zhu, C. Hu, J. Wang, Y. Chen, Y. Zhao, Z. Chi, A precise microalgae farming for CO2 sequestration: a critical review and perspectives. Sci. Total. Environ. 901, 166013 (2023)
P. Srivastava, E. García-Quismondo, J. Palma, C. González-Fernández, Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield technological competitiveness and challenges. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.04.293
B. Ramprakash, P. Lindblad, J.J. Eaton-Rye, A.J.R. Incharoensakdi, S.E. Reviews, Current strategies and future perspectives in biological hydrogen production: a review. Renew. Sustain. Energy Rev. 168, 112773 (2022)
C. Hitam, A.A. Jalil, A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conv. Bioref. 13(10), 8465–8483 (2023)
C. Putatunda, M. Behl, P. Solanki, S. Sharma, S.K. Bhatia, A. Walia, R.K. Bhatia, Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. Int. J. Hydrogen Energy 48(55), 21088–21109 (2023)
A. Ahmad, K. Rambabu, S.W. Hasan, P.L. Show, F. Banat, Biohydrogen production through dark fermentation: Recent trends and advances in transition to a circular bioeconomy. Int. J. Hydrogen Energy 52, 335–357 (2024)
A. Yuvaraj, D. Santhanaraj, A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Mater. Res. 17, 83–87 (2014)
A.S. Emam, M.O. Hamdan, B.A. Abu-Nabah, E. Elnajjar, A review on recent trends, challenges, and innovations in alkaline water electrolysis. Int. J. Hydrogen Energy 64, 599–625 (2024)
A. Hodges, S. Renz, F. Lohmann-Richters, A. Al-Musawi, A. Jupke, W. Lehnert, G.F. Swiegers, G.G. Wallace, Critical analysis of published physical property data for aqueous potassium hydroxide. collation into detailed models for alkaline electrolysis. J. Chem. Eng. Data 68(7), 1485–1506 (2023)
D.M. Santos, C.A. Sequeira, J.L. Figueiredo, Hydrogen production by alkaline water electrolysis. Quim. Nova 36, 1176–1193 (2013)
A.L. Santos, M.-J. Cebola, D.M. Santos, Towards the hydrogen economy—a review of the parameters that influence the efficiency of alkaline water electrolyzers. Energies 14(11), 3193 (2021)
M.F. Ahmad Kamaroddin, N. Sabli, T.A. Tuan Abdullah, S.I. Siajam, L.C. Abdullah, A. Abdul Jalil, A. Ahmad, Membrane-based electrolysis for hydrogen production: a review. Membranes 11(11), 810 (2021)
A. Aricò, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 43, 107–118 (2013)
T. Egeland-Eriksen, A. Hajizadeh, S. Sartori, Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. Int. J. Hydrogen Energy 46(63), 31963–31983 (2021)
J. Koponen, A. Kosonen, V. Ruuskanen, K. Huoman, M. Niemelä, J. Ahola, Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int. J. Hydrogen Energy 42(50), 29648–29660 (2017)
S. Biswas, G. Kaur, G. Paul, S. Giddey, A critical review on cathode materials for steam electrolysis in solid oxide electrolysis. Int. J. Hydrogen Energy 48(34), 12541–12570 (2023)
A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen, B.V. Mathiesen, M.B. Mogensen, Recent advances in solid oxide cell technology for electrolysis. Science 370(6513), eaba6118 (2020)
M. Younas, S. Shafique, A. Hafeez, F. Javed, F.J.F. Rehman, An overview of hydrogen production: current status, potential, and challenges. Fuel 316, 123317 (2022)
G. Chisholm, T. Zhao, L. Cronin, Hydrogen from water electrolysis, in Storing Energy. (Elsevier, 2022), pp.559–591
S.S. Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 8, 13793–13813 (2022)
Q. Hassan, V.S. Tabar, A.Z. Sameen, H.M. Salman, M. Jaszczur, A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvest. Syst. (2023). https://doi.org/10.1515/ehs-2022-0134
S.S. Kumar, H. Lim, Recent advances in hydrogen production through proton exchange membrane water electrolysis–a review. Sustain. Energy Fuels 7(15), 3560–3583 (2023)
A. Besha, M. Tsehaye, G. Tiruye, A. Gebreyohannes, A. Awoke, R. Tufa, Deployable membrane-based energy technologies: the ethiopian prospect. Sustainability. 12, 8792 (2020)
J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies. Catal. Today 139(4), 244–260 (2009)
R. Shah, Pelletization and gasification of waste feedstock for syngas production, University of South-Eastern Norway (2023)
V. Ram, S.R.J.E. Salkuti, An overview of major synthetic fuels. Energies 16(6), 2834 (2023)
P. Cavaliere, Hydrogen applications, in Water Electrolysis for Hydrogen Production. (Springer, 2023), pp.653–727
J.A. Okolie, S. Nanda, A.K. Dalai, F. Berruti, J.A. Kozinski, A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 119, 109546 (2020)
C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chem. Rev. 114(3), 1673–1708 (2014)
P.K. Ghodke, A.K. Sharma, A. Jayaseelan, K. Gopinath, Hydrogen-rich syngas production from the lignocellulosic biomass by catalytic gasification: a state of art review on advance technologies, economic challenges, and future prospectus. Fuel 342, 127800 (2023)
B.J.N.F. Bigot, Preparation for assembly and commissioning of ITER. Nucl. Fusion. Fusion 62(4), 042001 (2022)
D. Clery, A piece of the sun: the quest for fusion energy. Abrams (2014)
N. R. Council, An assessment of the prospects for inertial fusion energy. National Academies Press. (2013)
J. Holdren, Safety and environmental aspects of fusion energy. Annu. Rev. Energy Environ. 16(1), 235–258 (1991)
J. Parisi, J. Ball, The future of fusion energy. World Scientific (2019)
E.G. Carayannis, J. Draper, Reviewing fusion energy to address climate change by 2050. 47(1/2), 1–46. (2021)
T. S. Carter, R. Baalrud, T. Betti, Ellis, J. Foster, C. Geddes, A. Gleason, C. Holland, P. Humrickhouse, and C. Kessel, Powering the future: Fusion & plasmas. 2020, US Department of Energy (USDOE), Washington, DC (United States). Office of
Board, S.S., E. National academies of sciences, and medicine, progress toward implementation of the 2013 Decadal survey for solar and space physics: A midterm assessment. National Academies Press (2020)
S. Imran, M. Hussain, Emerging trends in water splitting innovations for solar hydrogen production: analysis, comparison, and economical insights. Int. J. Hydrogen Energy 77, 975–996 (2024)
M.J. Molaei, Recent advances in hydrogen production through photocatalytic water splitting: a review. Fuel 365, 131159 (2024)
Y. Zhao, Z. Niu, J. Zhao, L. Xue, X. Fu, J. Long, Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy Rev. 6(1), 14 (2023)
A.V. Raghu, T. Tachikawa, Ceramic materials for photocatalytic/photoelectrochemical fuel generation, in Conversion of water and CO2 to fuels using solar energy: science technology and materials. (Wiley, NY, 2024), pp.285–307
S. Nishioka, F.E. Osterloh, X. Wang, T.E. Mallouk, K. Maeda, Photocatalytic water splitting. Nat. Rev. Methods Prim. 3(1), 42 (2023)
H. Khan, M.U.H. Shah, Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: a review. J. Environ. Chem. Eng. 11, 111532 (2023)
N. AbouSeada, M.G. Elmahgary, S.O. Abdellatif, K. Kirah, Synergistic integration of zirconium-based metal-organic frameworks and graphitic carbon nitride for sustainable energy solutions: a comprehensive review. J. Alloy. Compd. 1002, 175325 (2024)
S. Chandrasekaran, J.S. Chung, E.J. Kim, S.H. Hur, Advanced nano-structured materials for photocatalytic water splitting. J. Electrochem. Sci. Technol. 7(1), 1–12 (2016)
S. Saeidi, A. Sápi, A.H. Khoja, S. Najari, M. Ayesha, Z. Kónya, B.B. Asare-Bediako, A. Tatarczuk, V. Hessel, F.J. Keil, Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renew. Sustain. Energy Rev. 183, 113392 (2023)
N. Hassan, A. Jalil, S. Rajendran, N. Khusnun, M. Bahari, A. Johari, M. Kamaruddin, M. Ismail, Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.09.068
P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017)
E.Y. Badawi, R.A. Elkharsa, E.A. Abdelfattah, Value proposition of bio-hydrogen production from different biomass sources. Energy Nexus 10, 100194 (2023)
W. Chen, T. Li, Y. Ren, J. Wang, H. Chen, Q. Wang, Biological hydrogen with industrial potential: Improvement and prospection in biohydrogen production. J. Clean. Prod. 387, 135777 (2023)
J. Knaster, A. Moeslang, T. Muroga, Materials research for fusion. Nat. Phys. 12(5), 424–434 (2016)
L. El-Guebaly, Managing fusion radioactive materials: Approaches and challenges facing fusion in the 21st century. Fusion Sci. Technol. 79(8), 919–931 (2023)
W.C. Ng, C.S. Yaw, S.N.A. Shaffee, N.A. Abd Samad, Z.K. Koi, M.N. Chong, Elevating the prospects of green hydrogen (H2) production through solar-powered water splitting devices: a systematic review. Sustain. Mater. Technol. 40, e00972 (2024)
O.F. Aldosari, I. Hussain, Z. Malaibari, Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: recent advances, challenges, and techno-feasible assessment. J. Energy Chem. 80, 658–688 (2023)
T. Ikuerowo, S.O. Bade, A. Akinmoladun, B.A. Oni, The integration of wind and solar power to water electrolyzer for green hydrogen production. Int. J. Hydrogen Energy (2024). https://doi.org/10.1016/j.ijhydene.2024.02.139
D. Singh, S. Kumawat, A. Saini, P. Sonia, A. Goyal, G. Sravanthi, K.K. Saxena, S. Shaik, V. Raja, C.A. Saleel, Water splitting via electrocatalysis and photocatalysis: engineering stumbling blocks and advancements. Int. J. Hydrogen Energy 68, 867–884 (2024)
M. Zoback, D. Smit, Meeting the challenges of large-scale carbon storage and hydrogen production. Proc. Natl. Acad. Sci. 120(11), e2202397120 (2023)
R. Kotagodahetti, K. Hewage, F. Razi, R. Sadiq, Comparative life cycle environmental and cost assessments of renewable natural gas production pathways. Energy Convers. Manage. 278, 116715 (2023)
Z. Medghalchi, O. Taylan, A novel hybrid optimization framework for sizing renewable energy systems integrated with energy storage systems with solar photovoltaics, wind, battery and electrolyzer-fuel cell. Energy Convers. Manage. 294, 117594 (2023)
B. Yang, R. Zhang, Z. Shao, C. Zhang, The economic analysis for hydrogen production cost towards electrolyzer technologies: current and future competitiveness. Int. J. Hydrogen Energy 48(37), 13767–13779 (2023)
J. Tang, C. Su, Z. Shao, Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. Exploration (2024). https://doi.org/10.1002/EXP.20220112
S.K. Dash, S. Chakraborty, D. Elangovan, A brief review of hydrogen production methods and their challenges. Energies 16(3), 1141 (2023)
M.A. Hossain, M.R. Islam, M.A. Hossain, M. Hossain, Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 72, 108170 (2023)
S. Ren, X. Feng, Y. Wang, Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system. Renew. Sustain. Energy Rev. 147, 111208 (2021)
N. Nirmala, G. Praveen, S. AmitKumar, P. SundarRajan, A. Baskaran, P. Priyadharsini, S. SanjayKumar, S. Dawn, K.G. Pavithra, J. Arun, A review on biological biohydrogen production: outlook on genetic strain enhancements, reactor model and techno-economics analysis. Sci. Total. Environ. 896, 165143 (2023)
M. Gottardo, J. Dosta, C. Cavinato, S. Crognale, B. Tonanzi, S. Rossetti, D. Bolzonella, P. Pavan, F. Valentino, Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. J. Clean. Prod. 404, 136919 (2023)
E. Carayannis, M. Vinzenzi, J. Draper, N. Kanellos, Can fusion be the next general-purpose technology? Theory, policy, practice, and politics perspectives on stewarding fusion energy research. J. Knowl. Econ.Knowl. Econ. 15(2), 1–18 (2023)
D. Cohen-Tanugi, R. Delaporte-Mathurin, M. Handley, S. Meschini, A. Maris, T. Mouratidis, J. Mullen, A. Seltzman, M. Stapelberg, M. Short, enabling commercial fusion: venture & technology opportunities for a growing fusion industry. (2024)
L.M. Amoo, R.L. Fagbenle, An integrated impact assessment of hydrogen as a future energy carrier in Nigeria’s transportation, energy and power sectors. Int. J. Hydrogen Energy 39(24), 12409–12433 (2014)
F. Franzoni, M. Milani, L. Montorsi, V. Golovitchev, Combined hydrogen production and power generation from aluminum combustion with water: analysis of the concept. Int. J. Hydrogen Energy 35(4), 1548–1559 (2010)
X. Yu, N.S. Sandhu, Z. Yang, M. Zheng, Suitability of energy sources for automotive application–a review. Appl. Energy 271, 115169 (2020)
I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13(6–7), 1513–1522 (2009)
P. Hoffmann, Tomorrow's Energy, revised and expanded edition: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. MIT press (2012)
B. Widera, Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 16, 100460 (2020)
P. Ahmadi, A. Khoshnevisan, Dynamic simulation and lifecycle assessment of hydrogen fuel cell electric vehicles considering various hydrogen production methods. Int. J. Hydrogen Energy 47(62), 26758–26769 (2022)
L.M. Gandia, G. Arzamedi, P.M. Diéguez, Renewable hydrogen technologies: production, purification, storage, applications and safety. Newnes (2013)
E. Wolf, Large-scale hydrogen energy storage, in Electrochemical energy storage for renewable sources and grid balancing. (Elsevier, 2015), pp.129–142
Q. Wang, M. Xue, B.-L. Lin, Z. Lei, Z. Zhang, Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China. J. Clean. Prod. 275, 123061 (2020)
R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904–3951 (2007)
S. Koohi-Kamali, V. Tyagi, N. Rahim, N. Panwar, H. Mokhlis, Emergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew. Sustain. Energy Rev. 25, 135–165 (2013)
G. Jeerh, M. Zhang, S. Tao, Recent progress in ammonia fuel cells and their potential applications. J. Mater. Chem. A 9(2), 727–752 (2021)
P.D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015)
D.O. Akinyele, R.K. Rayudu, Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 8, 74–91 (2014)
R.B. Schainker, Executive overview: energy storage options for a sustainable energy future. In IEEE Power Engineering Society General Meeting, 2004. IEEE (2004)
J. Andrews, B. Shabani, Re-envisioning the role of hydrogen in a sustainable energy economy. Int. J. Hydrogen Energy 37(2), 1184–1203 (2012)
N. Shakeri, M. Zadeh, J.B. Nielsen, Hydrogen fuel cells for ship electric propulsion: moving toward greener ships. IEEE Electrific. Mag. 8(2), 27–43 (2020)
R. Estevez, F.J. López-Tenllado, L. Aguado-Deblas, F.M. Bautista, A.A. Romero, D. Luna, Current research on green ammonia (nh3) as a potential vector energy for power storage and engine fuels: a review. Energies 16(14), 5451 (2023)
D. Andriani, Y. Bicer, A review of hydrogen production from onboard ammonia decomposition: Maritime applications of concentrated solar energy and boil-off gas recovery. Fuel 352, 128900 (2023)
G. Chehade, I. Dincer, Progress in green ammonia production as potential carbon-free fuel. Fuel 299, 120845 (2021)
M. Aziz, A.T. Wijayanta, A.B.D. Nandiyanto, Ammonia as effective hydrogen storage: a review on production, storage and utilization. Energies 13(12), 3062 (2020)
H. Ishaq, C. Crawford, Review and evaluation of sustainable ammonia production, storage and utilization. Energy Convers. Manage. 300, 117869 (2024)
C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13(2), 331–344 (2020)
G. Li, Z. Ma, J. Zhao, J. Zhou, S. Peng, Y. Li, B. Wang, Research progress in green synthesis of ammonia as hydrogen-storage carrier under ‘hydrogen 2.0 economy.’ Clean Energy 7(1), 116–131 (2023)
M. Asif, S.S. Bibi, S. Ahmed, M. Irshad, M.S. Hussain, H. Zeb, M.K. Khan, J. Kim, Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chem. Eng. J. 473, 145381 (2023)
N.-E. Laadel, M. El Mansori, N. Kang, S. Marlin, Y. Boussant-Roux, Permeation barriers for hydrogen embrittlement prevention in metals–a review on mechanisms, materials suitability and efficiency. Int. J. Hydrogen Energy 47(76), 32707–32731 (2022)
O. Faye, J. Szpunar, U. Eduok, A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 47(29), 13771–13802 (2022)
S.A. Gorji, Challenges and opportunities in green hydrogen supply chain through metaheuristic optimization. J. Comput. Design Eng. 10(3), 1143–1157 (2023)
C. Acar, I. Dincer, Hydrogen Energy, in Comprehensive energy systems. (Elsevier, The Netherlands, 2018), pp.568–605
M. Aziz, Liquid hydrogen: a review on liquefaction, storage, transportation, and safety. Energies 14(18), 5917 (2021)
B. Soltani, N.-E. Benchouia, Fuel cells and hydrogen storage: challenges facing vehicle manufacturers. Int. J. Sci. Res. Eng. Technol. (IJSET) 10, 10–18 (2019)
H. Lee, J. Haider, M.A. Qyyum, C. Choe, H. Lim, An innovative high energy efficiency–based process enhancement of hydrogen liquefaction: energy, exergy, and economic perspectives. Fuel 320, 123964 (2022)
J.O. Ighalo, P.B. Amama, Recent advances in the catalysis of steam reforming of methane (SRM). Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.10.177
S. Sikiru, T.L. Oladosu, T.I. Amosa, J.O. Olutoki, M. Ansari, K.J. Abioye, Z.U. Rehman, H. Soleimani, Hydrogen-powered horizons: transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J. Hydrogen Energy 56, 1152–1182 (2024)
E. Sanjaya, A. Abbas, Plasma gasification as an alternative energy-from-waste (EFW) technology for the circular economy: an environmental review. Resour. Conserv. Recycl.. Conserv. Recycl. 189, 106730 (2023)
B.D. Kossalbayev, G. Yilmaz, A.K. Sadvakasova, B.K. Zayadan, A.M. Belkozhayev, G.K. Kamshybayeva, G.A. Sainova, A.M. Bozieva, H.F. Alharby, and T. Tomo, Biotechnological production of hydrogen: Design features of photobioreactors and improvement of conditions for cultivating cyanobacteria. Int. J. Hydrogen Energy 49 (2023)
J.A. Luque-Urrutia, T. Ortiz-García, M. Solà, A. Poater, Green energy by hydrogen production from water splitting, water oxidation catalysis and acceptorless dehydrogenative coupling. Inorganics 11(2), 88 (2023)
T. Eklund, A. Fredén, Hydrogen fuel in the domestic maritime transport sector of Fiji: A Feasibility Study (2023)
L. Jianlin, L. Guanghui, M. Suliang, S. Jie, An overview on hydrogen energy storage and transportation technology and its typical application in power system. Modern Electric Power 38(5), 535–545 (2021)
M. Ball, M. Wietschel, The future of hydrogen–opportunities and challenges. Int. J. Hydrogen Energy 34(2), 615–627 (2009)
C. Mendez, M. Contestabile, Y. Bicer, Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.04.194
D. Akal, S. Öztuna, M.K. Büyükakın, A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int. J. Hydrogen Energy 45(60), 35257–35268 (2020)
S.E. Hosseini, B. Butler, An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 17(1), 13–37 (2020)
D. Wu, D. Wang, T. Ramachandran, J. Holladay, A techno-economic assessment framework for hydrogen energy storage toward multiple energy delivery pathways and grid services. Energy 249, 123638 (2022)
P.T. Moseley, Electrochemical energy storage for renewable sources and grid balancing. Newnes (2014)
M. McPherson, N. Johnson, M. Strubegger, The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl. Energy 216, 649–661 (2018)
M.S. Javed, D. Zhong, T. Ma, A. Song, S. Ahmed, Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl. Energy 257, 114026 (2020)
P. Colbertaldo, S.B. Agustin, S. Campanari, J. Brouwer, Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. Int. J. Hydrogen Energy 44(19), 9558–9576 (2019)
A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai, A.H. Al-Muhtaseb, D.W. Rooney, Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-021-01322-8
Acknowledgements
The authors would like to thank Universiti Malaysia Pahang Al-Sultan Abdullah for providing financial assistance through grants UIC230821 and RDU232409. The Institute of Fluid Dynamics and Thermodynamics of the Faculty of Mechanical Engineering at Czech Technical University in Prague is gratefully acknowledged by the authors for its support through project number RVO12000.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Samylingam, L., Aslfattahi, N., Kok, C.K. et al. Underlying Developments in Hydrogen Production Technologies: Economic Aspects and Existent Challenges. Korean J. Chem. Eng. 41, 2961–2984 (2024). https://doi.org/10.1007/s11814-024-00264-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-024-00264-5