Skip to main content

Advertisement

Log in

Underlying Developments in Hydrogen Production Technologies: Economic Aspects and Existent Challenges

  • Review Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The quest for a carbon–neutral energy future has positioned hydrogen as a pivotal player in global-sustainability efforts. This comprehensive review examines the transformative role of hydrogen in revolutionizing sustainable energy consumption. Hydrogen’s high energy density, versatility, and minimal ecological footprint make it ideal for stabilizing the intermittent nature of renewable energy sources. This study evaluates the latest advancements in hydrogen production technologies, including advanced electrolysis, reforming strategies, and biologic processes, assessing their operational efficiencies and environmental impacts. In addition, it explores the strategic deployment of hydrogen in transportation, industrial processes, and electricity sectors, highlighting its potential to significantly reduce fossil-fuel dependence and mitigate climate change. The economic considerations and policy imperatives crucial for the global adoption and scaling of hydrogen storage systems are also discussed. This review underscores hydrogen’s critical role in creating an eco-efficient and resilient energy infrastructure, advocating for an accelerated transition to hydrogen-based solutions to achieve a cleaner, greener planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Zhang et al. [24]. Copyright 2023, Elsevier

Fig. 2

Copyright 2023, Elsevier

Fig. 3

Reproduced with permission from Zhang et al. [24]. Copyright 2023, Elsevier

Fig. 4

Reproduced with permission from Yuvaraj and Santhanaraj [53]-Open Access. Copyright 2023, Scientific Electronic Library Online

Fig. 5

Reproduced with permission from Besha et al. [69]. published under an open access Creative Common CC BY license. Copyright 2023, MDPI

Fig. 6

Copyright 2023, Korean Electrochemical Society

Similar content being viewed by others

Data availability

Data will be available on the reasonable request.

References

  1. Q. Hassan, P. Viktor, T.J. Al-Musawi, B.M. Ali, S. Algburi, H.M. Alzoubi, A.K. Al-Jiboory, A.Z. Sameen, H.M. Salman, M. Jaszczur, The renewable energy role in the global energy transformations. Renew. Energy Focus 48, 100545 (2024)

    Article  Google Scholar 

  2. J. Hwang, K. Maharjan, H. Cho, A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges. Int. J. Hydrogen Energy 48(74), 28629–28648 (2023)

    Article  CAS  Google Scholar 

  3. S.U. Batgi, I. Dincer, A study on comparative environmental impact assessment of thermochemical cycles and steam methane reforming processes for hydrogen production processes. Comput. Chem. Eng. 180, 108514 (2024)

    Article  CAS  Google Scholar 

  4. C. Bento, T.F. Lopes, P. Rodrigues, F. Gírio, C. Silva, Biogas reforming as a sustainable solution for hydrogen production: comparative environmental metrics with steam-methane reforming and water electrolysis in the Portuguese context. Int. J. Hydrogen Energy 66, 661–675 (2024)

    Article  CAS  Google Scholar 

  5. S.G. Nnabuife, C.K. Darko, P.C. Obiako, B. Kuang, X. Sun, K. Jenkins, A comparative analysis of different hydrogen production methods and their environmental impact. Clean Technol 5(4), 1344–1380 (2023)

    Article  Google Scholar 

  6. B. Azizimehr, T. Armaghani, R. Ghasemiasl, A.K. Nejadian, M.A. Javadi, A comprehensive review of recent developments in hydrogen production methods using a new parameter. Int. J. Hydrogen Energy 72, 716–729 (2024)

    Article  CAS  Google Scholar 

  7. F. Qureshi, M. Yusuf, H. Ibrahim, H. Kamyab, S. Chelliapan, C.Q. Pham, D.-V.N. Vo, Contemporary avenues of the hydrogen industry: opportunities and challenges in the eco-friendly approach. Environ. Res. 229, 115963 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. M. Aravindan, V. Hariharan, T. Narahari, A. Kumar, K. Madhesh, P. Kumar, R. Prabakaran, Fuelling the future: a review of non-renewable hydrogen production and storage techniques. Renew. Sustain. Energy Rev. 188, 113791 (2023)

    Article  Google Scholar 

  9. M. El-Shafie, Hydrogen production by water electrolysis technologies: a review. Results Eng. 20, 101426 (2023)

    Article  CAS  Google Scholar 

  10. A. Arsad, M. Hannan, A.Q. Al-Shetwi, R. Begum, M. Hossain, P.J. Ker, T.I. Mahlia, Hydrogen electrolyser technologies and their modelling for sustainable energy production: a comprehensive review and suggestions. Int. J. Hydrogen Energy 48(72), 27841–27871 (2023)

    Article  CAS  Google Scholar 

  11. Y. Wang, G. Xiao, S. Wang, H. Su, Application of nanomaterials in dark or light-assisted fermentation for enhanced biohydrogen production: a mini-review. Bioresour. Technol. Rep. 21, 101295 (2023)

    Article  CAS  Google Scholar 

  12. N.J. Rubinsin, N.A. Karim, S.N. Timmiati, K.L. Lim, W.N.R.W. Isahak, M. Pudukudy, An overview of the enhanced biomass gasification for hydrogen production. Int. J. Hydrogen Energy 49, 1139–1164 (2023)

    Article  Google Scholar 

  13. N. Wu, K. Lan, Y. Yao, An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification. Resour. Conserv. Recycl. 188, 106693 (2023)

    Article  CAS  Google Scholar 

  14. S. Bosu, N. Rajamohan, Recent advancements in hydrogen storage-comparative review on methods, operating conditions and challenges. Int. J. Hydrogen Energy 52, 352–370 (2024)

    Article  CAS  Google Scholar 

  15. M. Krichen, Y. Basheer, S.M. Qaisar, A. Waqar, A survey on energy storage: techniques and challenges. Energies 16(5), 2271 (2023)

    Article  CAS  Google Scholar 

  16. D. Wang, N. Liu, F. Chen, Y. Wang, J. Mao, Progress and prospects of energy storage technology research: BASED on multidimensional comparison. J Energy Storage 75, 109710 (2024)

    Article  Google Scholar 

  17. I. Samylingam, K. Kadirgama, N. Aslfattahi, L. Samylingam, D. Ramasamy, W. Harun, M. Samykano, R. Saidur, Review on thermal energy storage and eutectic nitrate salt melting point. In IOP Conference Series: Materials Science and Engineering. IOP Publishing (2021)

  18. Q. Hassan, A.Z. Sameen, H.M. Salman, M. Jaszczur, A.K. Al-Jiboory, Hydrogen energy future: advancements in storage technologies and implications for sustainability. J Energy Storage 72, 108404 (2023)

    Article  Google Scholar 

  19. F. Qureshi, M. Yusuf, M.A. Khan, H. Ibrahim, B.C. Ekeoma, H. Kamyab, M.M. Rahman, A.K. Nadda, S. Chelliapan, A State-of-The-Art Review on the Latest trends in Hydrogen production, storage, and transportation techniques. Fuel 340, 127574 (2023)

    Article  CAS  Google Scholar 

  20. D. Tang, G.-L. Tan, G.-W. Li, J.-G. Liang, S.M. Ahmad, A. Bahadur, M. Humayun, H. Ullah, A. Khan, M. Bououdina, State-of-the-art hydrogen generation techniques and storage methods: a critical review. J. Energy Storage 64, 107196 (2023)

    Article  Google Scholar 

  21. B.S. Zainal, P.J. Ker, H. Mohamed, H.C. Ong, I. Fattah, S.A. Rahman, L.D. Nghiem, T.I. Mahlia, Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 189, 113941 (2024)

    Article  CAS  Google Scholar 

  22. S.O. Bade, O.S. Tomomewo, A. Meenakshisundaram, P. Ferron, B.A. Oni, Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: a review. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.08.157

    Article  Google Scholar 

  23. I. Rolo, V.A. Costa, F.P. Brito, Hydrogen-based energy systems: current technology development status, opportunities and challenges. Energies 17(1), 180 (2023)

    Article  Google Scholar 

  24. F. Zhang, P. Zhao, M. Niu, J. Maddy, The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 41(33), 14535–14552 (2016)

    Article  CAS  Google Scholar 

  25. M.L. Murray, E.H. Seymour, R. Pimenta, Towards a hydrogen economy in Portugal. Int. J. Hydrogen Energy 32(15), 3223–3229 (2007)

    Article  CAS  Google Scholar 

  26. I. Iordache, A.V. Gheorghe, M. Iordache, Towards a hydrogen economy in Romania: statistics, technical and scientific general aspects. Int. J. Hydrogen Energy 38(28), 12231–12240 (2013)

    Article  CAS  Google Scholar 

  27. U.Y.J.E. Qazi, Future of hydrogen as an alternative fuel for next-generation industrial applications; challenges and expected opportunities. Energies 15(13), 4741 (2022)

    Article  CAS  Google Scholar 

  28. A. Oni, K. Anaya, T. Giwa, G. Di Lullo, A. Kumar, Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conv. Manage. 254, 115245 (2022)

    Article  CAS  Google Scholar 

  29. H. Ozcan, R.S. El-Emam, B.A. Horri, Thermochemical looping technologies for clean hydrogen production–current status and recent advances. J. Clean. Prod. 382, 135295 (2022)

    Article  Google Scholar 

  30. E. Daneshvar, R.J. Wicker, P.-L. Show, A. Bhatnagar, Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–a review. Chem. Eng. J. 427, 130884 (2022)

    Article  CAS  Google Scholar 

  31. I. Dincer, C. Zamfirescu, Sustainable energy systems and applications, in District Energy Systems. (Springer Science and Business, Boston, MA, 2011), pp.389–429

    Google Scholar 

  32. S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 43, 1151–1158 (2015)

    Article  CAS  Google Scholar 

  33. J.M. Ogden, Review of small stationary reformers for hydrogen production. Report to the international energy agency. 2001. 609

  34. S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art catalysts for CH4 steam reforming at low temperature. Int. J. Hydrogen Energy 39(5), 1979–1997 (2014)

    Article  CAS  Google Scholar 

  35. R. Kothari, D. Buddhi, R. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 12(2), 553–563 (2008)

    Article  CAS  Google Scholar 

  36. M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U. Farooqi, C. Lee, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 47(77), 33112–33134 (2022)

    Article  CAS  Google Scholar 

  37. T.N. Do, H. Kwon, M. Park, C. Kim, Y.T. Kim, J.J.E.C. Kim, Carbon-neutral hydrogen production from natural gas via electrified steam reforming: Techno-economic-environmental perspective. Energy Convers Manag. 279, 116758 (2023)

    Article  CAS  Google Scholar 

  38. L. Samylingam, N. Aslfattahi, C.K. Kok, K. Kadirgama, N. Sazali, M. Schmirler, D. Ramasamy, W.S.W. Harun, M. Samykano, A. Veerendra, Green engineering with nanofluids: elevating energy efficiency and sustainability. J. Adv. Res. Micro Nano Eng. 16(1), 19–34 (2024)

    Article  Google Scholar 

  39. N. Chalkiadakis, E. Stamatakis, M. Varvayanni, A. Stubos, G. Tzamalis, T.J.E. Tsoutsos, A new path towards sustainable energy transition: techno-economic feasibility of a complete hybrid Small Modular Reactor/Hydrogen (SMR/H2) energy system. Energies 16(17), 6257 (2023)

    Article  CAS  Google Scholar 

  40. A. Oni, K. Anaya, T. Giwa, G. Di Lullo, A. Kumar, Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manage. 254, 115245 (2022)

    Article  CAS  Google Scholar 

  41. F.R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, D.L. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32(2), 172–184 (2007)

    Article  CAS  Google Scholar 

  42. R. Chaubey, S. Sahu, O.O. James, S. Maity, A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 23, 443–462 (2013)

    Article  CAS  Google Scholar 

  43. N. Martinez-Perez, S. Cherryman, G.C. Premier, R.M. Dinsdale, D.L. Hawkes, F.R. Hawkes, G. Kyazze, A.J. Guwy, The potential for hydrogen-enriched biogas production from crops: scenarios in the UK. Biomass Bioenerg. 31(2–3), 95–104 (2007)

    Article  CAS  Google Scholar 

  44. I. Dincer, C. Acar, A review on clean energy solutions for better sustainability. Int. J. Energy Res. 39(5), 585–606 (2015)

    Article  Google Scholar 

  45. A. Guwy, R. Dinsdale, J. Kim, J. Massanet-Nicolau, G. Premier, Fermentative biohydrogen production systems integration. Biores. Technol. 102(18), 8534–8542 (2011)

    Article  CAS  Google Scholar 

  46. Y. Wang, Y. Liu, Z. Xu, K. Yin, Y. Zhou, J. Zhang, P. Cui, S. Ma, Y. Wang, Z.J.R. Zhu, S.E. Reviews, A review on renewable energy-based chemical engineering design and optimization. Renew. Sustain. Energy Rev. 189, 114015 (2024)

    Article  CAS  Google Scholar 

  47. C. Zhu, C. Hu, J. Wang, Y. Chen, Y. Zhao, Z. Chi, A precise microalgae farming for CO2 sequestration: a critical review and perspectives. Sci. Total. Environ. 901, 166013 (2023)

    Article  CAS  PubMed  Google Scholar 

  48. P. Srivastava, E. García-Quismondo, J. Palma, C. González-Fernández, Coupling dark fermentation and microbial electrolysis cells for higher hydrogen yield technological competitiveness and challenges. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.04.293

    Article  Google Scholar 

  49. B. Ramprakash, P. Lindblad, J.J. Eaton-Rye, A.J.R. Incharoensakdi, S.E. Reviews, Current strategies and future perspectives in biological hydrogen production: a review. Renew. Sustain. Energy Rev. 168, 112773 (2022)

    Article  CAS  Google Scholar 

  50. C. Hitam, A.A. Jalil, A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Conv. Bioref. 13(10), 8465–8483 (2023)

    Article  Google Scholar 

  51. C. Putatunda, M. Behl, P. Solanki, S. Sharma, S.K. Bhatia, A. Walia, R.K. Bhatia, Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. Int. J. Hydrogen Energy 48(55), 21088–21109 (2023)

    Article  CAS  Google Scholar 

  52. A. Ahmad, K. Rambabu, S.W. Hasan, P.L. Show, F. Banat, Biohydrogen production through dark fermentation: Recent trends and advances in transition to a circular bioeconomy. Int. J. Hydrogen Energy 52, 335–357 (2024)

    Article  CAS  Google Scholar 

  53. A. Yuvaraj, D. Santhanaraj, A systematic study on electrolytic production of hydrogen gas by using graphite as electrode. Mater. Res. 17, 83–87 (2014)

    Article  CAS  Google Scholar 

  54. A.S. Emam, M.O. Hamdan, B.A. Abu-Nabah, E. Elnajjar, A review on recent trends, challenges, and innovations in alkaline water electrolysis. Int. J. Hydrogen Energy 64, 599–625 (2024)

    Article  CAS  Google Scholar 

  55. A. Hodges, S. Renz, F. Lohmann-Richters, A. Al-Musawi, A. Jupke, W. Lehnert, G.F. Swiegers, G.G. Wallace, Critical analysis of published physical property data for aqueous potassium hydroxide. collation into detailed models for alkaline electrolysis. J. Chem. Eng. Data 68(7), 1485–1506 (2023)

    Article  CAS  Google Scholar 

  56. D.M. Santos, C.A. Sequeira, J.L. Figueiredo, Hydrogen production by alkaline water electrolysis. Quim. Nova 36, 1176–1193 (2013)

    Article  CAS  Google Scholar 

  57. A.L. Santos, M.-J. Cebola, D.M. Santos, Towards the hydrogen economy—a review of the parameters that influence the efficiency of alkaline water electrolyzers. Energies 14(11), 3193 (2021)

    Article  CAS  Google Scholar 

  58. M.F. Ahmad Kamaroddin, N. Sabli, T.A. Tuan Abdullah, S.I. Siajam, L.C. Abdullah, A. Abdul Jalil, A. Ahmad, Membrane-based electrolysis for hydrogen production: a review. Membranes 11(11), 810 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Aricò, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J. Appl. Electrochem. 43, 107–118 (2013)

    Article  Google Scholar 

  60. T. Egeland-Eriksen, A. Hajizadeh, S. Sartori, Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. Int. J. Hydrogen Energy 46(63), 31963–31983 (2021)

    Article  CAS  Google Scholar 

  61. J. Koponen, A. Kosonen, V. Ruuskanen, K. Huoman, M. Niemelä, J. Ahola, Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int. J. Hydrogen Energy 42(50), 29648–29660 (2017)

    Article  CAS  Google Scholar 

  62. S. Biswas, G. Kaur, G. Paul, S. Giddey, A critical review on cathode materials for steam electrolysis in solid oxide electrolysis. Int. J. Hydrogen Energy 48(34), 12541–12570 (2023)

    Article  CAS  Google Scholar 

  63. A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen, B.V. Mathiesen, M.B. Mogensen, Recent advances in solid oxide cell technology for electrolysis. Science 370(6513), eaba6118 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. M. Younas, S. Shafique, A. Hafeez, F. Javed, F.J.F. Rehman, An overview of hydrogen production: current status, potential, and challenges. Fuel 316, 123317 (2022)

    Article  CAS  Google Scholar 

  65. G. Chisholm, T. Zhao, L. Cronin, Hydrogen from water electrolysis, in Storing Energy. (Elsevier, 2022), pp.559–591

    Chapter  Google Scholar 

  66. S.S. Kumar, H. Lim, An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 8, 13793–13813 (2022)

    Article  Google Scholar 

  67. Q. Hassan, V.S. Tabar, A.Z. Sameen, H.M. Salman, M. Jaszczur, A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvest. Syst. (2023). https://doi.org/10.1515/ehs-2022-0134

    Article  Google Scholar 

  68. S.S. Kumar, H. Lim, Recent advances in hydrogen production through proton exchange membrane water electrolysis–a review. Sustain. Energy Fuels 7(15), 3560–3583 (2023)

    Article  CAS  Google Scholar 

  69. A. Besha, M. Tsehaye, G. Tiruye, A. Gebreyohannes, A. Awoke, R. Tufa, Deployable membrane-based energy technologies: the ethiopian prospect. Sustainability. 12, 8792 (2020)

    Article  CAS  Google Scholar 

  70. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies. Catal. Today 139(4), 244–260 (2009)

    Article  CAS  Google Scholar 

  71. R. Shah, Pelletization and gasification of waste feedstock for syngas production, University of South-Eastern Norway (2023)

  72. V. Ram, S.R.J.E. Salkuti, An overview of major synthetic fuels. Energies 16(6), 2834 (2023)

    Article  CAS  Google Scholar 

  73. P. Cavaliere, Hydrogen applications, in Water Electrolysis for Hydrogen Production. (Springer, 2023), pp.653–727

    Chapter  Google Scholar 

  74. J.A. Okolie, S. Nanda, A.K. Dalai, F. Berruti, J.A. Kozinski, A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew. Sustain. Energy Rev. 119, 109546 (2020)

    Article  CAS  Google Scholar 

  75. C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chem. Rev. 114(3), 1673–1708 (2014)

    Article  CAS  PubMed  Google Scholar 

  76. P.K. Ghodke, A.K. Sharma, A. Jayaseelan, K. Gopinath, Hydrogen-rich syngas production from the lignocellulosic biomass by catalytic gasification: a state of art review on advance technologies, economic challenges, and future prospectus. Fuel 342, 127800 (2023)

    Article  CAS  Google Scholar 

  77. B.J.N.F. Bigot, Preparation for assembly and commissioning of ITER. Nucl. Fusion. Fusion 62(4), 042001 (2022)

    Article  Google Scholar 

  78. D. Clery, A piece of the sun: the quest for fusion energy. Abrams (2014)

  79. N. R. Council, An assessment of the prospects for inertial fusion energy. National Academies Press. (2013)

  80. J. Holdren, Safety and environmental aspects of fusion energy. Annu. Rev. Energy Environ. 16(1), 235–258 (1991)

    Article  Google Scholar 

  81. J. Parisi, J. Ball, The future of fusion energy. World Scientific (2019)

  82. E.G. Carayannis, J. Draper, Reviewing fusion energy to address climate change by 2050. 47(1/2), 1–46. (2021)

  83. T. S. Carter, R. Baalrud, T. Betti, Ellis, J. Foster, C. Geddes, A. Gleason, C. Holland, P. Humrickhouse, and C. Kessel, Powering the future: Fusion & plasmas. 2020, US Department of Energy (USDOE), Washington, DC (United States). Office of

  84. Board, S.S., E. National academies of sciences, and medicine, progress toward implementation of the 2013 Decadal survey for solar and space physics: A midterm assessment. National Academies Press (2020)

  85. S. Imran, M. Hussain, Emerging trends in water splitting innovations for solar hydrogen production: analysis, comparison, and economical insights. Int. J. Hydrogen Energy 77, 975–996 (2024)

    Article  CAS  Google Scholar 

  86. M.J. Molaei, Recent advances in hydrogen production through photocatalytic water splitting: a review. Fuel 365, 131159 (2024)

    Article  CAS  Google Scholar 

  87. Y. Zhao, Z. Niu, J. Zhao, L. Xue, X. Fu, J. Long, Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy Rev. 6(1), 14 (2023)

    Article  CAS  Google Scholar 

  88. A.V. Raghu, T. Tachikawa, Ceramic materials for photocatalytic/photoelectrochemical fuel generation, in Conversion of water and CO2 to fuels using solar energy: science technology and materials. (Wiley, NY, 2024), pp.285–307

    Chapter  Google Scholar 

  89. S. Nishioka, F.E. Osterloh, X. Wang, T.E. Mallouk, K. Maeda, Photocatalytic water splitting. Nat. Rev. Methods Prim. 3(1), 42 (2023)

    Article  CAS  Google Scholar 

  90. H. Khan, M.U.H. Shah, Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: a review. J. Environ. Chem. Eng. 11, 111532 (2023)

    Article  CAS  Google Scholar 

  91. N. AbouSeada, M.G. Elmahgary, S.O. Abdellatif, K. Kirah, Synergistic integration of zirconium-based metal-organic frameworks and graphitic carbon nitride for sustainable energy solutions: a comprehensive review. J. Alloy. Compd. 1002, 175325 (2024)

    Article  CAS  Google Scholar 

  92. S. Chandrasekaran, J.S. Chung, E.J. Kim, S.H. Hur, Advanced nano-structured materials for photocatalytic water splitting. J. Electrochem. Sci. Technol. 7(1), 1–12 (2016)

    Article  Google Scholar 

  93. S. Saeidi, A. Sápi, A.H. Khoja, S. Najari, M. Ayesha, Z. Kónya, B.B. Asare-Bediako, A. Tatarczuk, V. Hessel, F.J. Keil, Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments. Renew. Sustain. Energy Rev. 183, 113392 (2023)

    Article  CAS  Google Scholar 

  94. N. Hassan, A. Jalil, S. Rajendran, N. Khusnun, M. Bahari, A. Johari, M. Kamaruddin, M. Ismail, Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.09.068

    Article  Google Scholar 

  95. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017)

    Article  CAS  Google Scholar 

  96. E.Y. Badawi, R.A. Elkharsa, E.A. Abdelfattah, Value proposition of bio-hydrogen production from different biomass sources. Energy Nexus 10, 100194 (2023)

    Article  CAS  Google Scholar 

  97. W. Chen, T. Li, Y. Ren, J. Wang, H. Chen, Q. Wang, Biological hydrogen with industrial potential: Improvement and prospection in biohydrogen production. J. Clean. Prod. 387, 135777 (2023)

    Article  CAS  Google Scholar 

  98. J. Knaster, A. Moeslang, T. Muroga, Materials research for fusion. Nat. Phys. 12(5), 424–434 (2016)

    Article  CAS  Google Scholar 

  99. L. El-Guebaly, Managing fusion radioactive materials: Approaches and challenges facing fusion in the 21st century. Fusion Sci. Technol. 79(8), 919–931 (2023)

    Article  Google Scholar 

  100. W.C. Ng, C.S. Yaw, S.N.A. Shaffee, N.A. Abd Samad, Z.K. Koi, M.N. Chong, Elevating the prospects of green hydrogen (H2) production through solar-powered water splitting devices: a systematic review. Sustain. Mater. Technol. 40, e00972 (2024)

    Google Scholar 

  101. O.F. Aldosari, I. Hussain, Z. Malaibari, Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: recent advances, challenges, and techno-feasible assessment. J. Energy Chem. 80, 658–688 (2023)

    Article  Google Scholar 

  102. T. Ikuerowo, S.O. Bade, A. Akinmoladun, B.A. Oni, The integration of wind and solar power to water electrolyzer for green hydrogen production. Int. J. Hydrogen Energy (2024). https://doi.org/10.1016/j.ijhydene.2024.02.139

    Article  Google Scholar 

  103. D. Singh, S. Kumawat, A. Saini, P. Sonia, A. Goyal, G. Sravanthi, K.K. Saxena, S. Shaik, V. Raja, C.A. Saleel, Water splitting via electrocatalysis and photocatalysis: engineering stumbling blocks and advancements. Int. J. Hydrogen Energy 68, 867–884 (2024)

    Article  CAS  Google Scholar 

  104. M. Zoback, D. Smit, Meeting the challenges of large-scale carbon storage and hydrogen production. Proc. Natl. Acad. Sci. 120(11), e2202397120 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. R. Kotagodahetti, K. Hewage, F. Razi, R. Sadiq, Comparative life cycle environmental and cost assessments of renewable natural gas production pathways. Energy Convers. Manage. 278, 116715 (2023)

    Article  Google Scholar 

  106. Z. Medghalchi, O. Taylan, A novel hybrid optimization framework for sizing renewable energy systems integrated with energy storage systems with solar photovoltaics, wind, battery and electrolyzer-fuel cell. Energy Convers. Manage. 294, 117594 (2023)

    Article  CAS  Google Scholar 

  107. B. Yang, R. Zhang, Z. Shao, C. Zhang, The economic analysis for hydrogen production cost towards electrolyzer technologies: current and future competitiveness. Int. J. Hydrogen Energy 48(37), 13767–13779 (2023)

    Article  CAS  Google Scholar 

  108. J. Tang, C. Su, Z. Shao, Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. Exploration (2024). https://doi.org/10.1002/EXP.20220112

    Article  PubMed  PubMed Central  Google Scholar 

  109. S.K. Dash, S. Chakraborty, D. Elangovan, A brief review of hydrogen production methods and their challenges. Energies 16(3), 1141 (2023)

    Article  CAS  Google Scholar 

  110. M.A. Hossain, M.R. Islam, M.A. Hossain, M. Hossain, Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 72, 108170 (2023)

    Article  Google Scholar 

  111. S. Ren, X. Feng, Y. Wang, Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system. Renew. Sustain. Energy Rev. 147, 111208 (2021)

    Article  Google Scholar 

  112. N. Nirmala, G. Praveen, S. AmitKumar, P. SundarRajan, A. Baskaran, P. Priyadharsini, S. SanjayKumar, S. Dawn, K.G. Pavithra, J. Arun, A review on biological biohydrogen production: outlook on genetic strain enhancements, reactor model and techno-economics analysis. Sci. Total. Environ. 896, 165143 (2023)

    Article  CAS  PubMed  Google Scholar 

  113. M. Gottardo, J. Dosta, C. Cavinato, S. Crognale, B. Tonanzi, S. Rossetti, D. Bolzonella, P. Pavan, F. Valentino, Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: a pilot scale demonstration. J. Clean. Prod. 404, 136919 (2023)

    Article  CAS  Google Scholar 

  114. E. Carayannis, M. Vinzenzi, J. Draper, N. Kanellos, Can fusion be the next general-purpose technology? Theory, policy, practice, and politics perspectives on stewarding fusion energy research. J. Knowl. Econ.Knowl. Econ. 15(2), 1–18 (2023)

    Google Scholar 

  115. D. Cohen-Tanugi, R. Delaporte-Mathurin, M. Handley, S. Meschini, A. Maris, T. Mouratidis, J. Mullen, A. Seltzman, M. Stapelberg, M. Short, enabling commercial fusion: venture & technology opportunities for a growing fusion industry. (2024)

  116. L.M. Amoo, R.L. Fagbenle, An integrated impact assessment of hydrogen as a future energy carrier in Nigeria’s transportation, energy and power sectors. Int. J. Hydrogen Energy 39(24), 12409–12433 (2014)

    Article  CAS  Google Scholar 

  117. F. Franzoni, M. Milani, L. Montorsi, V. Golovitchev, Combined hydrogen production and power generation from aluminum combustion with water: analysis of the concept. Int. J. Hydrogen Energy 35(4), 1548–1559 (2010)

    Article  CAS  Google Scholar 

  118. X. Yu, N.S. Sandhu, Z. Yang, M. Zheng, Suitability of energy sources for automotive application–a review. Appl. Energy 271, 115169 (2020)

    Article  Google Scholar 

  119. I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 13(6–7), 1513–1522 (2009)

    Article  Google Scholar 

  120. P. Hoffmann, Tomorrow's Energy, revised and expanded edition: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. MIT press (2012)

  121. B. Widera, Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 16, 100460 (2020)

    Article  Google Scholar 

  122. P. Ahmadi, A. Khoshnevisan, Dynamic simulation and lifecycle assessment of hydrogen fuel cell electric vehicles considering various hydrogen production methods. Int. J. Hydrogen Energy 47(62), 26758–26769 (2022)

    Article  CAS  Google Scholar 

  123. L.M. Gandia, G. Arzamedi, P.M. Diéguez, Renewable hydrogen technologies: production, purification, storage, applications and safety. Newnes (2013)

  124. E. Wolf, Large-scale hydrogen energy storage, in Electrochemical energy storage for renewable sources and grid balancing. (Elsevier, 2015), pp.129–142

    Chapter  Google Scholar 

  125. Q. Wang, M. Xue, B.-L. Lin, Z. Lei, Z. Zhang, Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China. J. Clean. Prod. 275, 123061 (2020)

    Article  CAS  Google Scholar 

  126. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904–3951 (2007)

    Article  CAS  PubMed  Google Scholar 

  127. S. Koohi-Kamali, V. Tyagi, N. Rahim, N. Panwar, H. Mokhlis, Emergence of energy storage technologies as the solution for reliable operation of smart power systems: a review. Renew. Sustain. Energy Rev. 25, 135–165 (2013)

    Article  Google Scholar 

  128. G. Jeerh, M. Zhang, S. Tao, Recent progress in ammonia fuel cells and their potential applications. J. Mater. Chem. A 9(2), 727–752 (2021)

    Article  CAS  Google Scholar 

  129. P.D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015)

    Article  Google Scholar 

  130. D.O. Akinyele, R.K. Rayudu, Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 8, 74–91 (2014)

    Google Scholar 

  131. R.B. Schainker, Executive overview: energy storage options for a sustainable energy future. In IEEE Power Engineering Society General Meeting, 2004. IEEE (2004)

  132. J. Andrews, B. Shabani, Re-envisioning the role of hydrogen in a sustainable energy economy. Int. J. Hydrogen Energy 37(2), 1184–1203 (2012)

    Article  CAS  Google Scholar 

  133. N. Shakeri, M. Zadeh, J.B. Nielsen, Hydrogen fuel cells for ship electric propulsion: moving toward greener ships. IEEE Electrific. Mag. 8(2), 27–43 (2020)

    Article  Google Scholar 

  134. R. Estevez, F.J. López-Tenllado, L. Aguado-Deblas, F.M. Bautista, A.A. Romero, D. Luna, Current research on green ammonia (nh3) as a potential vector energy for power storage and engine fuels: a review. Energies 16(14), 5451 (2023)

    Article  CAS  Google Scholar 

  135. D. Andriani, Y. Bicer, A review of hydrogen production from onboard ammonia decomposition: Maritime applications of concentrated solar energy and boil-off gas recovery. Fuel 352, 128900 (2023)

    Article  CAS  Google Scholar 

  136. G. Chehade, I. Dincer, Progress in green ammonia production as potential carbon-free fuel. Fuel 299, 120845 (2021)

    Article  CAS  Google Scholar 

  137. M. Aziz, A.T. Wijayanta, A.B.D. Nandiyanto, Ammonia as effective hydrogen storage: a review on production, storage and utilization. Energies 13(12), 3062 (2020)

    Article  CAS  Google Scholar 

  138. H. Ishaq, C. Crawford, Review and evaluation of sustainable ammonia production, storage and utilization. Energy Convers. Manage. 300, 117869 (2024)

    Article  CAS  Google Scholar 

  139. C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13(2), 331–344 (2020)

    Article  Google Scholar 

  140. G. Li, Z. Ma, J. Zhao, J. Zhou, S. Peng, Y. Li, B. Wang, Research progress in green synthesis of ammonia as hydrogen-storage carrier under ‘hydrogen 2.0 economy.’ Clean Energy 7(1), 116–131 (2023)

    Article  Google Scholar 

  141. M. Asif, S.S. Bibi, S. Ahmed, M. Irshad, M.S. Hussain, H. Zeb, M.K. Khan, J. Kim, Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chem. Eng. J. 473, 145381 (2023)

    Article  CAS  Google Scholar 

  142. N.-E. Laadel, M. El Mansori, N. Kang, S. Marlin, Y. Boussant-Roux, Permeation barriers for hydrogen embrittlement prevention in metals–a review on mechanisms, materials suitability and efficiency. Int. J. Hydrogen Energy 47(76), 32707–32731 (2022)

    Article  CAS  Google Scholar 

  143. O. Faye, J. Szpunar, U. Eduok, A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 47(29), 13771–13802 (2022)

    Article  CAS  Google Scholar 

  144. S.A. Gorji, Challenges and opportunities in green hydrogen supply chain through metaheuristic optimization. J. Comput. Design Eng. 10(3), 1143–1157 (2023)

    Article  Google Scholar 

  145. C. Acar, I. Dincer, Hydrogen Energy, in Comprehensive energy systems. (Elsevier, The Netherlands, 2018), pp.568–605

    Chapter  Google Scholar 

  146. M. Aziz, Liquid hydrogen: a review on liquefaction, storage, transportation, and safety. Energies 14(18), 5917 (2021)

    Article  CAS  Google Scholar 

  147. B. Soltani, N.-E. Benchouia, Fuel cells and hydrogen storage: challenges facing vehicle manufacturers. Int. J. Sci. Res. Eng. Technol. (IJSET) 10, 10–18 (2019)

    CAS  Google Scholar 

  148. H. Lee, J. Haider, M.A. Qyyum, C. Choe, H. Lim, An innovative high energy efficiency–based process enhancement of hydrogen liquefaction: energy, exergy, and economic perspectives. Fuel 320, 123964 (2022)

    Article  CAS  Google Scholar 

  149. J.O. Ighalo, P.B. Amama, Recent advances in the catalysis of steam reforming of methane (SRM). Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.10.177

    Article  Google Scholar 

  150. S. Sikiru, T.L. Oladosu, T.I. Amosa, J.O. Olutoki, M. Ansari, K.J. Abioye, Z.U. Rehman, H. Soleimani, Hydrogen-powered horizons: transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int. J. Hydrogen Energy 56, 1152–1182 (2024)

    Article  CAS  Google Scholar 

  151. E. Sanjaya, A. Abbas, Plasma gasification as an alternative energy-from-waste (EFW) technology for the circular economy: an environmental review. Resour. Conserv. Recycl.. Conserv. Recycl. 189, 106730 (2023)

    Article  Google Scholar 

  152. B.D. Kossalbayev, G. Yilmaz, A.K. Sadvakasova, B.K. Zayadan, A.M. Belkozhayev, G.K. Kamshybayeva, G.A. Sainova, A.M. Bozieva, H.F. Alharby, and T. Tomo, Biotechnological production of hydrogen: Design features of photobioreactors and improvement of conditions for cultivating cyanobacteria. Int. J. Hydrogen Energy 49 (2023)

  153. J.A. Luque-Urrutia, T. Ortiz-García, M. Solà, A. Poater, Green energy by hydrogen production from water splitting, water oxidation catalysis and acceptorless dehydrogenative coupling. Inorganics 11(2), 88 (2023)

    Article  CAS  Google Scholar 

  154. T. Eklund, A. Fredén, Hydrogen fuel in the domestic maritime transport sector of Fiji: A Feasibility Study (2023)

  155. L. Jianlin, L. Guanghui, M. Suliang, S. Jie, An overview on hydrogen energy storage and transportation technology and its typical application in power system. Modern Electric Power 38(5), 535–545 (2021)

    Google Scholar 

  156. M. Ball, M. Wietschel, The future of hydrogen–opportunities and challenges. Int. J. Hydrogen Energy 34(2), 615–627 (2009)

    Article  CAS  Google Scholar 

  157. C. Mendez, M. Contestabile, Y. Bicer, Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.04.194

    Article  Google Scholar 

  158. D. Akal, S. Öztuna, M.K. Büyükakın, A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int. J. Hydrogen Energy 45(60), 35257–35268 (2020)

    Article  CAS  Google Scholar 

  159. S.E. Hosseini, B. Butler, An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 17(1), 13–37 (2020)

    Article  CAS  Google Scholar 

  160. D. Wu, D. Wang, T. Ramachandran, J. Holladay, A techno-economic assessment framework for hydrogen energy storage toward multiple energy delivery pathways and grid services. Energy 249, 123638 (2022)

    Article  CAS  Google Scholar 

  161. P.T. Moseley, Electrochemical energy storage for renewable sources and grid balancing. Newnes (2014)

  162. M. McPherson, N. Johnson, M. Strubegger, The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl. Energy 216, 649–661 (2018)

    Article  CAS  Google Scholar 

  163. M.S. Javed, D. Zhong, T. Ma, A. Song, S. Ahmed, Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl. Energy 257, 114026 (2020)

    Article  Google Scholar 

  164. P. Colbertaldo, S.B. Agustin, S. Campanari, J. Brouwer, Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. Int. J. Hydrogen Energy 44(19), 9558–9576 (2019)

    Article  CAS  Google Scholar 

  165. A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai, A.H. Al-Muhtaseb, D.W. Rooney, Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-021-01322-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Malaysia Pahang Al-Sultan Abdullah for providing financial assistance through grants UIC230821 and RDU232409. The Institute of Fluid Dynamics and Thermodynamics of the Faculty of Mechanical Engineering at Czech Technical University in Prague is gratefully acknowledged by the authors for its support through project number RVO12000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Samylingam or K. Kadirgama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samylingam, L., Aslfattahi, N., Kok, C.K. et al. Underlying Developments in Hydrogen Production Technologies: Economic Aspects and Existent Challenges. Korean J. Chem. Eng. 41, 2961–2984 (2024). https://doi.org/10.1007/s11814-024-00264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00264-5

Keywords

Navigation