Skip to main content
Log in

Change of Mechanical Properties of e-PTFE Support by Electrochemical Degradation in Polymer Electrolyte Membrane Fuel Cell

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In polymer electrolyte membrane fuel cell (PEMFC), the cost and durability are main challenges to commercialization. To achieve the long-term durability target, the durability of PEMFC materials should be further improved. In this paper, we investigated the chemical and electrochemical degradation of the expanded polytetrafluoroethylene (e-PTFE) support and examined how it influences the mechanical properties of the e-PTFE support. We conducted the Fenton test and open circuit voltage (OCV) holding and analyzed the chemical and physical structural changes of the e-PTFE support by utilizing Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and tensile test. After the chemical and electrochemical degradations, the molecular bonds of e-PTFE were broken, and the microstructures of e-PTFE were deformed. As the result the mechanical properties of e-PTFE showed significant decrease. Consequently, our results show that the e-PTFE support is deteriorated chemically during PEMFC operation, and this chemical degradation lead reduction of mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Larminie, A. Dicks, Fuel Cell Systems Explained (John Wiley and Sons, Chichester, England, 2000)

    Google Scholar 

  2. S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrog. Energy 35(17), 9349–9384 (2010)

    Article  CAS  Google Scholar 

  3. R.K. Pachauri, Y.K. Chauhan, Renew. Sustain. Energy Rev. 43, 1301–1319 (2015)

    Article  Google Scholar 

  4. J. Lee, K. Hyun, Y. Kwon, Korean J. Chem. Eng. 40, 1775–1782 (2023)

    Article  CAS  Google Scholar 

  5. DOE U.S. DOE fuel cell technologies office multi-year research, development, and demonstration plan. 3.4 fuel cells (2016), https://www.energy.gov/sites/default/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf. Accessed 24 Jan 2024

  6. DOE U.S. Fuel cell technical team roadmap (2017), https://www.energy.gov/eere/vehicles/articles/us-drive-fuel-cell-technical-team-roadmap. Accessed 24 Jan 2024

  7. DOE U.S. 2020 DOE hydrogen and fuel cells program review presentation, fuel cell system analysis (2020), https://www.hydrogen.energy.gov/pdfs/review20/fc163_james_2020_o.pdf. Accessed 24 Jan 2024

  8. DOE U.S. 2021 DOE hydrogen and fuel cells program review presentation, fuel cell system analysis (2021), https://www.hydrogen.energy.gov/pdfs/review21/fc163_james_2021_o.pdf. Accessed 24 Jan 2024

  9. S.H. Woo, S. Kim, S. Woo, S. Park, Y.S. Kang, N. Jung, S. Yim, Korean J. Chem. Eng. 40, 2455–2462 (2023)

    Article  CAS  Google Scholar 

  10. X.X. Wang, M.T. Swihart, G. Wu, Nat. Catal. 2, 578–589 (2019)

    Article  CAS  Google Scholar 

  11. S. Ohyagi, T. Sasaki, Electrochim. Acta 102, 336–341 (2013)

    Article  CAS  Google Scholar 

  12. S. Hidai, M. Kobayashi, H. Niwa, Y. Harada, M. Oshima, Y. Nakamori, T. Aoki, J. Power. Sources 196(20), 8340–8345 (2011)

    Article  CAS  Google Scholar 

  13. L. Dubau, F. Maillard, M. Chatenet, J. André, E. Rossinot, Electrochim. Acta 56(2), 776–783 (2010)

    Article  CAS  Google Scholar 

  14. M. Zatoń, J. Rozière, D.J. Jones, Sustain. Energy Fuels 1, 409–438 (2017)

    Article  Google Scholar 

  15. Y. Tang, A. Kusoglu, A.M. Karlsson, M.H. Santare, S. Cleghorn, W.B. Johnson, J. Power. Sources 175(2), 817–825 (2008)

    Article  CAS  Google Scholar 

  16. A. Kusoglu, M.H. Santare, A.M. Karlsson, S. Cleghorn, W.B. Johnson, J. Electrochem. Soc. 157(5), 705–713 (2010)

    Article  Google Scholar 

  17. A. Kusoglu, A.M. Karlsson, M.H. Santare, S. Cleghorn, W.B. Johnson, J. Power. Sources 170(2), 345–358 (2007)

    Article  CAS  Google Scholar 

  18. DOE U.S. 2022 Annual merit review and peer evaluation report: fuel cell technologies (2022), https://www.hydrogen.energy.gov/pdfs/review22/2022-amr-05-fuel-cell-technologies.pdf. Accessed 24 Jan 2024

  19. A.R. Hobson, S.J. MacKenzie, US Patent, 6,613,203 (2009)

  20. S. Ebnesajjad, Expanded PTFE Applications Handbook: Technology, Manufacturing and Applications (Elsevier Science, New York, 2016)

    Google Scholar 

  21. Y.H. Lai, C.K. Mittelsteadt, C.S. Gittleman, D.A. Dillard, J. Fuel Cell Sci. Technol. (2009). https://doi.org/10.1115/1.2971045

    Article  Google Scholar 

  22. D. Spernjak, P.P. Mukherjee, R. Mukundan, J. Davey, D.S. Hussey, D. Jcobson, R.L. Borup, ECS Trans. 33(1), 1451–1456 (2010)

    Article  CAS  Google Scholar 

  23. S.M. MacKinnon, T.J. Fuller, F.D. Coms, M.R. Schoeneweiss, C.S. Gittleman, Y.H. Lai, R. Jiang, A.M. Brenner, Fuel Cells – Proton-Exchange Membrane Fuel Cells | Membranes: Design and Characterization, in Encyclopedia of Electrochemical Power Sources. (Academic Press, Boston, 2009), pp.741–754

    Chapter  Google Scholar 

  24. C.S. Gittleman, F.D. Coms, Y.H. Lai, Polymer Electrolyte Fuel Cell Degradation Chapter 2 - Membrane Durability: Physical and Chemical Degradation (Academic Press, Boston, 2012)

    Google Scholar 

  25. M. Crum, W. Liu, Trans. ECS Trans. 3(1), 541 (2006)

    Article  CAS  Google Scholar 

  26. S. Oh, D. Lim, Y. Han, S. Lee, D. Yoo, K. Park, Korean J. Chem. Eng. 41, 545–552 (2024)

    Article  CAS  Google Scholar 

  27. N.S. Khattra, Z. Lu, A.M. Karlsson, M.H. Santare, F.C. Busby, T. Schmiedel, J. Power. Sources 228, 256–269 (2013)

    Article  CAS  Google Scholar 

  28. L. Junsheng, X. Yang, H. Tang, M. Pan, J. Membr. Sci. 361(1–2), 38–42 (2010)

    Google Scholar 

  29. W.D. Callister, Fundamentals of Materials Science and Engineering (Wiley, London, 2000)

    Google Scholar 

  30. E. Endoh, S. Terazono, H. Widjaja, Y. Takimoto, Electrochem. Solid-State Lett. 7(7), A209-211 (2004)

    Article  CAS  Google Scholar 

  31. F.A. de Bruijin, V.A.T. Dam, G.J.M. Janssen, Fuel Cells 8(1), 3–22 (2008)

    Article  Google Scholar 

  32. B.C. Hwang, S.H. Oh, M.S. Lee, D.H. Lee, K.P. Park, Korean J. Chem. Eng. 35, 2290–2295 (2018)

    Article  CAS  Google Scholar 

  33. Z. Wang, H. Tang, J. Li, M. Pan, J. Appl. Polym. Sci. 121(3), 1464–1468 (2011)

    Article  CAS  Google Scholar 

  34. D. Yoo, B. Hwang, S. Oh, K. Park, Korean J. Chem. Eng. 40(8), 2004–2009 (2023)

    Article  CAS  Google Scholar 

  35. N. Hasegawa, T. Asano, T. Hatanaka, M. Kawasumi, Y. Morimoto, ECS Trans. 16(2), 1713 (2008)

    Article  CAS  Google Scholar 

  36. T. Kim, H. Lee, W. Sim, S. Kim, T. Lim, K. Park, Korean J. Chem. Eng. 26(5), 1265–1271 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (20017400, Development of technology for thinning and widening the reinforced electrolyte membrane and improving durability) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea)

Funding

This article is funded by Ministry of Trade, Industry and Energy, 20017400, Kwon Pil Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwonpil Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1226 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, D., Oh, S., Han, Y. et al. Change of Mechanical Properties of e-PTFE Support by Electrochemical Degradation in Polymer Electrolyte Membrane Fuel Cell. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00182-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00182-6

Keywords

Navigation