Skip to main content
Log in

Loading of 4-Chloro-3-Formylcoumarin on the Potassium-Based Perylene Tetracarboxylic Acid as the Metal–Organic Framework for the Biocompatible Antimicrobial Performances

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are a unique class of porous materials formed by connecting metal ions or clusters within the organic ligands. They have attracted substantial attention in various fields, including drug delivery and their potential in addressing microbial infections. In this particular research, we accomplished the successful encapsulation of 4-chloro-3-formylcoumarin (CFC) within potassium-based perylene tetracarboxylic acid (K4PTC) MOFs. Our investigation involved characterizing this process using proton chemical shifts, affirming the effective incorporation of CFC molecules within the cavities of the MOFs. Moreover, the differences between MOFs that had been loaded with CFC and those that remained unloaded are strikingly evident in scanning electron microscopy (SEM) images. These distinctions allowed us to visually confirm the successful loading of CFC into the MOFs. To evaluate the MOFs' antibacterial properties, we conducted experiments involving two human pathogenic microbes. The results revealed significant zones of growth inhibition corresponding to the concentration of MOFs used, underscoring their potent antibacterial activity. In addition to these assessments, we conducted a biofilm assay to gauge the MOFs' effectiveness in countering the formation of biofilms by these pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. W. Zhou, S. Begum, Z. Wang, P. Krolla, D. Wagner, S. Bräse, C. Wöll, M. Tsotsalas, High antimicrobial activity of metal−organic framework-templated porphyrin polymer thin films. ACS Appl. Mater. Interfaces 10, 1528–1533 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. S.E. Cosgrove, The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect. Dis.. Infect. Dis. 42, S82–S89 (2006)

    Article  Google Scholar 

  3. J.A. Al-Tawfiq, P.A. Tambyah, Healthcare associated infections (HAI) perspectives. J. Infect. Public Health 7, 339–344 (2014)

    Article  PubMed  Google Scholar 

  4. S. Li, S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, X. Chen, Antibacterial hydrogels. Adv. Sci. 5, 1700527 (2018)

    Article  Google Scholar 

  5. E.D. Brown, G.D. Wright, Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. M.G. Rimoli, M.R. Rabaioli, D. Melisi, A. Curcio, S. Mondello, R. Mirabelli, E. Abignente, Synthetic zeolites as a new tool for drug delivery. J. Biomed. Mater. Res. A 87, 156–164 (2008)

    Article  PubMed  Google Scholar 

  7. X. Li, M. Qi, C. Li, B. Dong, J. Wang, M.D. Weir, S. Imazato, L. Du, C.D. Lynch, L. Xu, Y. Zhou, L. Wang, H.H.K. Xu, Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. J. Mater. Chem. B. 7, 6955–6971 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. G. Luo, Y. Jiang, C. Xie, X. Lu, Metal-organic framework-based biomaterials for biomedical applications. Biosurf. Biotribol. 7, 99–112 (2021)

    Article  Google Scholar 

  9. V. Chernikova, O. Shekhah, M. Eddaoudi, Advanced fabrication method for the preparation of MOF thin films: liquid-phase epitaxy approach meets spin coating method. ACS Appl. Mat. Inter. 8, 20459–20464 (2016)

    Article  CAS  Google Scholar 

  10. W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III., M. Bosch, H.-C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. T. Simon-Yarza, A. Mielcarek, P. Couvreur, C. Serre, Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30, 1707365 (2018)

    Article  Google Scholar 

  13. W. Guerra, P.P. Silva-Caldeira, H. Terenzi, E.C. Pereira-Maia, Impact of metal coordination on the antibiotic and non-antibiotic activities of tetracycline-based drugs. Coord. Chem. Rev. 327, 188–199 (2016)

    Article  Google Scholar 

  14. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  15. W. Cai, J. Wang, C. Chu, W. Chen, C. Wu, G. Liu, Metal–organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 6, 1801526 (2019)

    Article  Google Scholar 

  16. Y. Liu, C.S. Gong, Y. Dai, Z. Yang, G. Yu, Y. Liu, M. Zhang, L. Lin, W. Tang, Z. Zhou, G. Zhu, J. Chen, O. Jacobson, D.O. Kiesewetter, Z. Wang, X. Chen, In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 218, 119365 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B.R. Dekić, N.S. Radulović, V.S. Dekić, R.D. Vukićević, R.M. Palić, Synthesis and antimicrobial activity of new 4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules 15, 2246–2256 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  18. M.D. Douka, K.E. Litinas, An overview on the synthesis of fused pyridocoumarins with biological interest. Molecules 27, 7256 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.R. Sahoo, J. Sahoo, M. Mahapatra, D. Lenka, P.K. Sahu, B. Dehury, R.N. Padhy, S.K. Paidesetty, Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem. 14, 102922 (2021)

    Article  Google Scholar 

  20. N. Baral, S. Mohapatra, B.P. Raiguru, N.P. Mishra, P. Panda, S. Nayak, S.K. Pandey, P.S. Kumar, C.R. Sahoo, Microwave-assisted rapid and efficient synthesis of new series of chromene-based 1,2,4-oxadiazole derivatives and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem. 56, 552–565 (2019)

    Article  CAS  Google Scholar 

  21. C.R. Sahoo, S.K. Paidesetty, B. Dehury, R.N. Padhy, Molecular dynamics and computational study of Mannich-based coumarin derivatives: potent tyrosine kinase inhibitor. J. Biomol. Struct. Dyn. 38, 5419–5428 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. C.R. Sahoo, S.K. Paidesetty, B. Dehury, R.N. Padhy, Nostocine A derivatives as human DNA topoisomerase II-alpha inhibitor. Ind. J. Pharm. Educ. Res. 54, 669–675 (2020)

    Google Scholar 

  23. P. Patra, 4-Chloro-3-formylcoumarin as a multifaceted building block for the development of various bio-active substituted and fused coumarin heterocycles: a brief review. New J. Chem. 45, 14269 (2021)

    Article  CAS  Google Scholar 

  24. M.M. Zeydi, S.J. Kalantarian, Z. Kazeminejad, Overview on developed synthesis procedures of coumarin heterocycles. J. Iran. Chem. Soc. 17, 3031–3094 (2020)

    Article  CAS  Google Scholar 

  25. S. Bairagi, A. Bhosale, M.N. Deodhar, Design, synthesis and evaluation of Schiff’s bases of 4-chloro-3-coumarin aldehyde as antimicrobial agents. E-J. Chem. 6, 759–762 (2009)

    Article  CAS  Google Scholar 

  26. R. Rajamohan, C.J. Raorane, S.-C. Kim, M. Murali Krishnan, Y.R. Lee, Supramolecular β-cyclodextrin-quercetin based metal-organic frameworks as an efficient antibiofilm and antifungal agent. Molecules 28, 3667 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Rajamohan, S. Ashokkumar, M. Murali Krishnan, K. Murugavel, M. Murugan, Y.R. Lee, Adenosine: β-cyclodextrin based metal-organic frameworks as a potential material for cancer therapy. Biomolecules 13, 1154 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. Mounyr, S. Moulay, I. Koraichi, Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6, 71–79 (2016)

    Article  Google Scholar 

  29. C.J. Raorane, J.-H. Lee, Y.-G. Kim, S. Rajasekharan, R. García-Contreras, J. Lee, Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 10, 990 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  30. C.J. Raorane, J.-H. Lee, J. Lee, Rapid killing and biofilm inhibition of multidrug-resistant Acinetobacter baumannii strains and other microbes by iodoindoles. Biomolecules 10, 1186 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y.-G. Kim, J.-H. Lee, C.J. Raorane, S.T. Oh, J.G. Park, J. Lee, Herring oil and omega fatty acids inhibit Staphylococcus aureus biofilm formation and virulence. Front. Microbiol. 9, 1241 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  32. R.K. Raj, S. Gunasekaran, T. Gnanasambandan, S. Seshadri, Combined spectroscopic and DFT studies on 6-bromo-4-chloro-3-formyl coumarin. Spectrochim. Acta Part A. 139, 505–514 (2015)

    Article  CAS  Google Scholar 

  33. I. Strakova, M. Petrova, S. Belyakov, A. Strakovs, Reactions of 4-chloro-3-formylcoumarin with primary amines. Chem. Heterocyc. Comp. 42, 5 (2006)

    Article  Google Scholar 

  34. S. Martins, E. de Andrade, S.K. Gautam, O. Plantevin, L. Cury, A. Malachias, G.A. Magalhães Safar, Aggregation-induced emission and temperature-dependent luminescence of potassium perylenetetracarboxylate. J. Flu. 31, 1855–1862 (2021)

    Article  Google Scholar 

  35. I. Strakova, M. Petrova, S. Belyakov, A. Strakovs, Reactions of 4-chloro-3-formylcoumarin with arylhydrazines. Chem. Heterocyc. Comp. 39, 1608–1616 (2003)

    Article  CAS  Google Scholar 

  36. A.A. Ibrahim, S.L. Ali, M.S. Adly, S.A. El-Hakam, S.E. Samra, A.I. Ahmed, Green construction of eco-friendly phosphotungstic acid Sr-MOF catalysts for crystal violet removal and synthesis of coumarin and xanthene compounds. RSC Adv. 11, 37276–37289 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Wu, C. Du, F. Ma, Y. Shen, J. Zhou, Optimization of metal–organic (citric acid) frameworks for controlled release of nutrients. RSC Adv. 9, 32270–32277 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. Ravi, A. Pathigoolla, H. Balan, R. Gupta, G. Raj, R. Varghese, K.M. Sureshan, Adamantoid scaffolds for multiple cargo loading and cellular delivery as β-cyclodextrin inclusion complexes. Angew. Chem. Int. Ed.. Chem. Int. Ed. 62, e202307324 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1A6C1010046). This project was supported by Researchers Supporting Project number (RSPD2024R712), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Rajaram Rajamohan: conceptualization, methodology, interpretation, and writing—original draft. Chandramohan Govindasamy: interpretation. Michael Ruby Raj: methodology and interpretation. Chaitany Jayprakash Raorane: methodology and interpretation. Seong-Cheol Kim: methodology and interpretation. Sivakumar Allur Subramanian: methodology and interpretation. Sung Jae Kim: methodology, interpretation, and review. Kuppusamy Murugavel: interpretation and writing. Sanjeevram Dhandapani: interpretation. Yong Rok Lee: review, editing—original draft, and supervision.

Corresponding authors

Correspondence to Rajaram Rajamohan or Yong Rok Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

No humans or animals have been used in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11814_2024_171_MOESM1_ESM.docx

The details of the preparation of K4PTC, cell culture, instruments used for the characterization, and NMR discussion of K4PTC are provided in the supplementary documents. Supplementary file1 (DOCX 512 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamohan, R., Govindasamy, C., Raj, M.R. et al. Loading of 4-Chloro-3-Formylcoumarin on the Potassium-Based Perylene Tetracarboxylic Acid as the Metal–Organic Framework for the Biocompatible Antimicrobial Performances. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00171-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00171-9

Keywords

Navigation