Skip to main content
Log in

Numerical Investigations of Collision Modes of Double Droplets on a Spherical Surface Based on the Phase Field Method

  • Review Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Droplet collision on surface is widely existed in nature and industrial production. In our research, two-dimensional rotational models and three-dimensional symmetric models based on the phase field method have been developed to simulate the collisions of continuous droplets on spherical surfaces. Using parametric dimensionless, the spreading diameter of the coalescing droplets, the width of the liquid bridge between the droplets, and the moving velocity of the three-phase contact line are obtained. When the two droplets are coaxial, the collision velocity of the droplets increases, and the radial velocity of the liquid bridge also increases. Due to the increase of droplet energy, both the first and second maximum spreading are increased, but the characteristic spreading ts time is reduced. When using the modified capillary inertia time \(\tau_{i}^{\prime }\) normalized spreading time ts, it is found that it fits well with the Weber number (We) by the curve 1.505 We−0.478. Increasing the ratio of curved surface to droplet diameter λ can reduce maximum spreading time and maximum rebound height of droplet. When there is a deviation between the centers of the droplets, the spread of the droplets no longer shows symmetry and the center of the condensed droplets moves towards the offset side of the tail droplets. These findings will provide insight into the dynamics of continuous droplet collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. B. Majhy, V.P. Singh, A.K. Sen, JCIS 565, 582 (2020)

    CAS  Google Scholar 

  2. J.W. Adams, T.R. Butts, D.M. Dodds, Weed Technol. 33, 66 (2019)

    Article  Google Scholar 

  3. C. Chen, J. Huang, H. Yi, Y. Zhang, J. Mech. Sci. Technol. 34, 3197 (2020)

    Article  Google Scholar 

  4. S. Wei, H. Jin, H. Zhou, K. Yang, N. Gao, W. Li, AIP Adv. 9, 6 (2019)

    Google Scholar 

  5. N. Chen, J. Du, Y. Hu, H. Ji, Y. Yuan, AIP Adv. 10, 4 (2020)

    Google Scholar 

  6. Z. Zhao, H. Li, A. Li, W. Fang, Z. Cai, M. Li, X. Feng, Y. Song, Nat. Commun.Commun. 12, 6899 (2021)

    Article  CAS  Google Scholar 

  7. C.D. Adam, Foren. Sci. Int. 303, 109934 (2019)

    Article  Google Scholar 

  8. H. Cong, L. Qian, Y. Wang, J. Lin, PhFl 32, 10 (2020)

    Google Scholar 

  9. L. Prince-Raj, K. Yee, R.S. Myong, Aerosp. Sci. Technol.. Sci. Technol. 98, 105659 (2020)

    Article  Google Scholar 

  10. S. Shen, F. Bi, Y. Guo, IJHMT 55, 6938 (2012)

    Article  Google Scholar 

  11. L. Deng, H. Wang, X. Zhu, R. Chen, Y. Ding, Eng. Appl. Comput. Fluid Mech 12, 598 (2018)

    Google Scholar 

  12. H. Chen, X. Liu, K. Wang, H. Liu, S. Shen, IJCFD 33, 222 (2019)

    Google Scholar 

  13. S. Ahmad, H. Tang, H. Yao, IJHMT 119, 433 (2018)

    Article  Google Scholar 

  14. D.-J. Lin, L.-Z. Zhang, M.-C. Yi, X. Wang, S.-R. Gao, Coatings 10, 6 (2020)

    Google Scholar 

  15. S.Y. Hitoshi-Fujimoto, K. Takahashi, T. Hama, Exp. Therm. Fluid Sci. 81, 136 (2016)

    Article  Google Scholar 

  16. P.G. Bange, G. Upadhyay, N.D. Patil, R.J.P.O.F. Bhardwaj, AIP Adv. Adv. 34, 11 (2022)

    Google Scholar 

  17. M. Kumar, R. Bhardwaj, K.C. Sahu, PhFl 32, 1 (2020)

    Google Scholar 

  18. T.D. Bonn, Phys. Rev. Fluids 6, 043604 (2021)

    Article  Google Scholar 

  19. L. Wang, X. Li, X. Kong, J. Feng, X. Peng, Eur. J. Mech. B. Fluids 96, 146 (2022)

    Article  Google Scholar 

  20. A.L. Xing, B.J. Li, C.M. Jiang, D.L. Zhao, PhFl 34, 072114 (2022)

    CAS  Google Scholar 

  21. S. Farzana, R. Baily, P.R. Waghmare, Exp. Therm Fluid Sci 128, 110450 (2021)

    Article  Google Scholar 

  22. C. Xie, J. Zhang, V. Bertola, M. Wang, J. Colloid Interface Sci. 463, 317 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. P.G. Bange, R. Bhardwaj, ThCFD 30, 211 (2015)

    Google Scholar 

  24. Y. Shen, S. Liu, C. Zhu, J. Tao, Z. Chen, ApPhL 110, 221601 (2017)

    Google Scholar 

  25. L. Wang, R. Wang, J. Wang, T.-S. Wong, Sci. Adv. 6, 29 (2020)

    Google Scholar 

  26. G. Liang, Y. Guo, X. Mu, S. Shen, Exp. Therm Fluid Sci 55, 150 (2014)

    Article  CAS  Google Scholar 

  27. S.A. Banitabaei, A. Amirfazli, PhFl 29, 6 (2017)

    Google Scholar 

  28. S. Bakshi, I.V. Roisman, C. Tropea, PhFl 19, 3 (2007)

    Google Scholar 

  29. G. Charalampous, Y. Hardalupas, PhFl 29, 10 (2017)

    Google Scholar 

  30. D. Zhang, K. Papadikis, S. Gu, Int. J. Therm. Sci. 84, 75 (2014)

    Article  Google Scholar 

  31. S.A. Banitabaei, A. Amirfazli, PhFl 32, 3 (2020)

    Google Scholar 

  32. I. Malgarinos, N. Nikolopoulos, M. Gavaises, IJHFF 61, 499 (2016)

    Google Scholar 

  33. L. Yan-Peng, W. Huan-Ran, Can. J. Chem. Eng. 89, 83 (2011)

    Article  Google Scholar 

  34. Y. Zhu, H.-R. Liu, K. Mu, P. Gao, H. Ding, X.-Y. Lu, JFM 824, 388 (2017)

    Article  Google Scholar 

  35. W. Hong, Y. Wang, Numer. Heat Transfer, Part B 71, 359 (2017)

    Article  CAS  Google Scholar 

  36. Y. Du, J. Liu, Y. Li, J. Du, X. Wu, Q. Min, Colloids Surf. Physicochem. Eng. Aspects 625, 126862 (2021)

    Article  CAS  Google Scholar 

  37. H. Deka, G. Biswas, S. Chakraborty, A. Dalal, PhFl 31, 1 (2019)

    Google Scholar 

  38. Y.-E. Wang, X.-P. Li, C.-C. Li, M.-M. Yang, Q.-H. Wei, JMatS 50, 5014 (2015)

    CAS  Google Scholar 

  39. D. Jacqmin, JCoPh 15, 1 (1999)

    Google Scholar 

  40. C.Y. Lim, Y.C. Lam, Microfluid. Nanofluid.. Nanofluid. 17, 131 (2013)

    Article  Google Scholar 

  41. Z. Wang, S. Dong, M.S. Triantafyllou, Y. Constantinides, G.E. Karniadakis, JCoPh 397, 108832 (2019)

    CAS  Google Scholar 

  42. J.J. Feng, C. Liu, J. Shen, P. Yue, Model. Soft Matter 141, 1 (2005)

    Article  Google Scholar 

  43. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 31, 688 (1959)

    Article  CAS  Google Scholar 

  44. P.-B. Tang, G.-Q. Wang, L. Wang, Z.-Y. Shi, Y. Li, J.-R. Xu, AcPSn 69, 2 (2020)

    Google Scholar 

  45. K. Range, F. Feuillebois, JCIS 203, 16 (1998)

    CAS  Google Scholar 

  46. H. Liu, PhFl 31, 9 (2019)

    Google Scholar 

  47. A. Gupta, R. Kumar, Comput. Fluids. Fluids 39, 1696 (2010)

    Article  CAS  Google Scholar 

  48. R. Rioboo, M. Marengo, C. Tropea, ExFl 33, 112 (2002)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the National Natural Science Foundation of China (No. 51875419), the Independent Innovation Projects of the Hubei Longzhong Laboratory (2022ZZ-14) and the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (No. GZKF-202122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1244 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Wang, Z., Yang, Q. et al. Numerical Investigations of Collision Modes of Double Droplets on a Spherical Surface Based on the Phase Field Method. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00159-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00159-5

Keywords

Navigation