Skip to main content
Log in

Improved Coloration Efficiency and Stability of WO3 Electrochromic Devices by the Addition of Silver Nanowires

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

WO3 is one of the most studied electrochromic materials due to its high coloration efficiency, strong cycling stability, and low price. Those advantages make WO3 ECD attractive to applications needing optical modulation, including smart windows and smart glasses. However, due to market demands for reduced manufacturing and operating costs, demands for improved coloration efficiency and long-term stability have been continuously raised. In this study, we attempted to improve the contact between WO3 nanoparticles and Li ions and electrons by forming a nanocomposite electrochromic layer of WO3 nanoparticles and silver nanowires. It was confirmed that this not only improves optical modulation and coloration efficiency but also improves stability. WO3 electrochromic devices with improved coloration efficiency and stability are expected to improve the performance of existing smart windows and smart glasses and be applicable to new applications such as virtual reality glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Gu, A.-B. Jia, Y.-M. Zhang, S.X.-A. Zhang, Chem. Rev. 122, 14679 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. X. Li, K. Perera, J. He, A. Gumyusenge, J. Mei, J. Mater. Chem. C 7, 12761 (2019)

    Article  CAS  Google Scholar 

  3. R.J. Mortimer, Chem. Soc. Rev. 26, 147 (1997)

    Article  CAS  Google Scholar 

  4. R.J. Mortimer, Annu. Rev. Mater. Res. 41, 241 (2011)

    Article  ADS  CAS  Google Scholar 

  5. V. Rai, R.S. Singh, D.J. Blackwood, D. Zhili, Adv. Eng. Mater. 22, 2000082 (2020)

    Article  CAS  Google Scholar 

  6. J.Y. Zheng, Q. Sun, J. Cui, X. Yu, S. Li, L. Zhang, S. Jiang, W. Ma, R. Ma, Nanoscale 15, 63 (2023)

    Article  CAS  Google Scholar 

  7. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011)

    Article  CAS  Google Scholar 

  8. S. Huang, Q. Zhang, P. Li, F. Ren, A. Yurtsever, D. Ma, Adv. Energy Mater. 8, 1703658 (2018)

    Article  Google Scholar 

  9. S. Nundy, A. Ghosh, Renew. Energy 156, 1361 (2020)

    Article  Google Scholar 

  10. J. Wang, C. Meng, C.-T. Wang, C.-H. Liu, Y.-H. Chang, C.-C. Li, H.-Y. Tseng, H.-S. Kwok, Y. Zi, Nano Energy 85, 105976 (2021)

    Article  CAS  Google Scholar 

  11. A. Hemaida, A. Ghosh, S. Sundaram, T.K. Mallick, Energy Build. 251, 111381 (2021)

    Article  Google Scholar 

  12. C. Fu, C. Foo, P.S. Lee, Electrochim. Acta 117, 139 (2014)

    Article  CAS  Google Scholar 

  13. M. Zhi, W. Huang, Q. Shi, M. Wang, Q. Wang, RSC Adv. 6, 67488 (2016)

    Article  ADS  CAS  Google Scholar 

  14. C.-K. Lin, S.-C. Tseng, C.-H. Cheng, C.-Y. Chen, C.-C. Chen, Thin Solid Films 520, 1375 (2011)

    Article  ADS  CAS  Google Scholar 

  15. S. Liu, W. Wang, J. Sol Gel Sci. Technol. 80, 480 (2016)

    Article  CAS  Google Scholar 

  16. X. Chang, R. Hu, S. Sun, T. Lu, T. Liu, Y. Lei, L. Dong, Y. Yin, Y. Zhu, Nanotechnology 29, 185707 (2018)

    Article  ADS  PubMed  Google Scholar 

  17. C. Costa, C. Pinheiro, I. Henriques, C.A.T. Laia, A.C.S. Appl, Mater. Interfaces 14, 3964 (2002)

    Google Scholar 

  18. J. Kim, S. Choi, S. Kim, W. Liu, M. Wang, X. Diao, C.S. Lee, Electrochim. Acta 472, 143394 (2023)

    Article  CAS  Google Scholar 

  19. C.L. Gaupp, D.M. Welsh, R.D. Rauh, J.R. Reynolds, Chem. Mater. 14, 3964 (2002)

    Article  CAS  Google Scholar 

  20. M.M. El-Nahass, M.M. Saadeldin, H.A.M. Ali, M. Zaghllol, Mater. Sci. Semicond. Process. 29, 201 (2015)

    Article  CAS  Google Scholar 

  21. T.A. Pauporté, J. Electrochem. Soc. 149, C539 (2002)

    Article  Google Scholar 

  22. M. Meenakshi, R. Sivakumar, P. Perumal, C. Sanjeeviraja, Mater. Today Proc. 3, S30 (2016)

    Article  Google Scholar 

  23. A.J. More, R.S. Patil, D.S. Dalavi, S.S. Mali, C.K. Hong, M.G. Gang, J.H. Kim, P.S. Patil, Mater. Lett. 134, 298 (2014)

    Article  CAS  Google Scholar 

  24. M. Arslan, Y.E. Firat, S.R. Tokgöz, A. Peksoz, Ceram. Int. 47, 32570 (2021)

    Article  CAS  Google Scholar 

  25. Y. Yin, C. Lan, H. Guo, C. Li, A.C.S. Appl, Mater. Interfaces 8, 3861 (2016)

    Article  CAS  Google Scholar 

  26. Z. Bi, S. Zhang, X. Xu, X. Hu, X. Li, X. Gao, Mater. Lett. 160, 186 (2015)

    Article  CAS  Google Scholar 

  27. X. Huo, X. Miao, X. Han, S. Tang, M. Zhang, M. Guo, J. Mater. Chem. A 8, 9927 (2020)

    Article  CAS  Google Scholar 

  28. S. Heo, C.J. Dahlman, C.M. Staller, T. Jiang, A. Dolocan, B.A. Korgel, D.J. Milliron, Nano Lett. 20, 2072 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. N.S. Pham, L.T. Nguyen, H.T. Nguyen, V.Q. Nguyen, T.B.T. Nguyen, C.D. Tran, B.N. Nguyen, A.Q.K. Nguyen, Ceram. Int. 49, 33413 (2023)

    Article  CAS  Google Scholar 

  30. J. Ortiz, D. Acosta, C. Magaña, J. Solid State Electrochem. 26, 1667 (2022)

    Article  CAS  Google Scholar 

  31. K. Wang, H. Zhang, G. Chen, T. Tian, K. Tao, L. Liang, J. Gao, H. Cao, J. Alloys Compd. 861, 158534 (2021)

    Article  CAS  Google Scholar 

  32. K. Li, Y. Shao, S. Liu, Q. Zhang, H. Wang, Y. Li, R.B. Kaner, Small 13, 1700380 (2017)

    Article  Google Scholar 

  33. M.-S. Fan, S.-Y. Kao, T.-H. Chang, R. Vittal, K.-C. Ho, Sol. Energy Mater. Sol. Cells 145, 35 (2016)

    Article  CAS  Google Scholar 

  34. G. Folcher, H. Cachet, M. Froment, J. Bruneaux, Thin Solid Films 301, 242 (1997)

    Article  ADS  CAS  Google Scholar 

  35. A. Kraft, H. Hennig, A. Herbst, K.-H. Heckner, J. Electroanal. Chem. 365, 191 (1994)

    Article  CAS  Google Scholar 

  36. L. Liu, S. Yellinek, L. Valdinger, A. Donval, D. Mandler, Electrochim. Acta 176, 1374 (2015)

    Article  CAS  Google Scholar 

  37. J.-H. Lan, J. Kanicki, Thin Solid Films 304, 123 (1997)

    Article  ADS  CAS  Google Scholar 

  38. S. Gardonio, L. Gregoratti, D. Scaini, Org. Electron. 9, 253 (2008)

    Article  CAS  Google Scholar 

  39. N.-R. Kim, J.-H. Lee, Y.-Y. Lee, D.-H. Nam, S.-Y. Lee, T.-Y. Yang, Y.-J. Lee, A. Chu, K.T. Nam, Y.-C. Joo, J. Mater. Chem. C 1, 5953 (2013)

    Article  CAS  Google Scholar 

  40. H.G. Manning, C.G. Da Rocha, C. O’Callaghan, M.S. Ferreira, J.J. Boland, Sci. Rep. 11550 (2019)

  41. F.H. An, Y.Z. Yuan, J.Q. Liu, M.D. He, B. Zhang, RSC Adv. 13, 13177 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Hashimoto, H. Matsuoka, J. Electrochem. Soc. 138, 2403 (1991)

    Article  ADS  CAS  Google Scholar 

  43. S. Hashimoto, H. Matsuoka, Surf. Interface Anal. 19, 464 (1992)

    Article  CAS  Google Scholar 

  44. R.-T. Wen, C.G. Granqvist, G.A. Niklasson, Nat. Mater. 14, 996 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Y.-N. Kim, H.-H. Shin, J.-K. Song, D.-H. Cho, H.-S. Lee, Y.-G. Jung, J. Mater. Res. 20, 1574 (2005)

    Article  ADS  CAS  Google Scholar 

  46. Q. Wang, G. Williams, H. Aziz, Org. Electron. 13, 2075 (2012)

    Article  CAS  Google Scholar 

  47. S. Macher, M. Rumpel, M. Schott, U. Posset, G.A. Giffin, P. Löbmann, A.C.S. Appl, Mater. Interfaces 12, 36695 (2020)

    Article  CAS  Google Scholar 

  48. W.S. Leung, Y.C. Chan, S.M. Lui, Microelectron. Eng. 101, 1 (2013)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Kumoh National Institute of Technology (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seog-Jin Jeon.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 423 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, DK., Jeon, SJ. Improved Coloration Efficiency and Stability of WO3 Electrochromic Devices by the Addition of Silver Nanowires. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00142-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00142-0

Keywords

Navigation