Skip to main content
Log in

Pumping with Modified Polyurethane Sponges: A Rapid Oil Spill Treatment Technology

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

With the rapid development of the marine transportation and oil exploration industries, oil spill accidents, such as ship discharges and leakages from oil transport vessels and offshore drilling platforms, occur from time to time, turning oil spill pollution at sea into an increasingly serious problem. Therefore, developing a rapid and efficient oil spill pollution treatment is of great significance to protect the water environment. In this study, we used a simple dip-coating method to modify polydimethylsiloxane and nano-alumina onto a polyurethane sponge skeleton to prepare a super-oleophilic/super-hydrophobic porous adsorbent called Al2O3@PDMS/PU. The prepared Al2O3@PDMS/PU has a contact angle of 156.8° with water and can adsorb oil or organic solvents equivalent to 16–38 times its own weight. Based on the excellent super-oleophilic/super-hydrophobic properties of Al2O3@PDMS/PU, we designed an oil collection device that can continuously recover oil and organic solvents. Unlike the traditional oil recovery method, this device integrates the oil–water separation and oil recovery processes such that the adsorption capacity of the adsorbent is no longer limited by its own weight and volume. This device shows broad application prospects in emergencies, such as oil leakages from drilling platforms and organic solvent leakage.

Graphical Abstract

Oil collection device for efficient recovery of oil in situ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

References

  1. H.K. White, S.L. Lyons, S.J. Harrison, D.M. Findley, Y. Liu, E.B. Kujawinski, Environ. Sci. Technol. Lett. 1, 295 (2014)

    Article  CAS  Google Scholar 

  2. Y. Pi, N. Xu, M. Bao, Y. Li, D. Lv, P. Sun, Environ. Sci.-Proc. Imp 17, 877 (2015)

    CAS  Google Scholar 

  3. M.L. Guarinello, S.K. Sturdivant, A.E. Murphy, L. Brown, J.A. Godbold, M. Solan, D.A. Carey, J.D. Germano, ACS ES&T Water 2, 1760 (2022)

    Article  CAS  Google Scholar 

  4. A. Panagopoulos, Chem. Eng. Process. -Process Intensif. 176, 108944 (2022)

    Article  CAS  Google Scholar 

  5. A. Panagopoulos, V. Giannika, J. Environ. Manage. 324, 116239 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. A. Panagopoulos, Resource Recovery Ind. Waste Waters 16, 337 (2023)

    Article  Google Scholar 

  7. P.C. Chen, Z.K. Xu, Sci. Rep. 3, 2776 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  8. M. Jin, J. Wang, X. Yao, M. Liao, Y. Zhao, L. Jiang, Adv. Mater. 23, 2861 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. R.S. Judson, M.T. Martin, D.M. Reif, K.A. Houck, T.B. Knudsen, D.M. Rotroff, M. Xia, S. Sakamuru, R. Huang, P. Shinn, C.P. Austin, R.J. Kavlock, D.J. Dix, Environ. Sci. Technol. 44, 5979 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.C. Brandão, A.C. Pinto Filho, Water Sci. Technol. Sci. Technol. 43, 83 (2001)

    Google Scholar 

  11. Z. Chu, Y. Feng, S. Seeger, Angew. Chem. Int. Ed. Engl. 54, 2328 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, J. Mater. Chem. A 2, 2445 (2014)

    Article  CAS  Google Scholar 

  13. W. Zheng, J. Huang, S. Li, M. Ge, L. Teng, Z. Chen, Y. Lai, ACS Appl. Mater. Interfaces 13, 67 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. X. Chen, J.A. Weibel, S.V. Garimella, Ind. Eng. Chem. Res. 55, 3596 (2016)

    Article  CAS  Google Scholar 

  15. X. Liu, L. Ge, W. Li, X. Wang, F. Li, ACS Appl. Mater. Interfaces 7, 791 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang, J. Gao, ACS Appl. Mater. Interfaces 5, 10018 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. L. Zhang, L. Xu, Y. Sun, N. Yang, Ind. Eng. Chem. Res. 55, 11260 (2016)

    Article  CAS  Google Scholar 

  18. F. Wang, S. Lei, C. Li, J. Ou, M. Xue, W. Li, Ind. Eng. Chem. Res. 53, 7141 (2014)

    Article  CAS  Google Scholar 

  19. W. Zhou, S. Li, Y. Liu, Z. Xu, S. Wei, G. Wang, J. Lian, Q. Jiang, ACS Appl. Mater. Interfaces 10, 9841 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Li, J. Qiu, S. Yuan, Q. Luo, C. Pei, Ind. Eng. Chem. Res. 56, 6508 (2017)

    Article  CAS  Google Scholar 

  21. J. Zhu, J. Hu, T. Peng, C. Jiang, S. Liu, Y. Li, T. Guo, L. Xie, Adv. Mater. Interfaces Mater. Interfaces. (2019). https://doi.org/10.1002/admi.201900025

    Article  Google Scholar 

  22. Y. Wang, J. Knapp, A. Legere, J. Raney, L. Li, RSC Adv. 5, 30570 (2015)

    Article  ADS  CAS  Google Scholar 

  23. J. Zeng, Z. Guo, Colloids Surf. A 444, 283 (2014)

    Article  CAS  Google Scholar 

  24. C. Liu, S. Zhang, J. Li, J. Wei, K. Mullen, M. Yin, Angew. Chem. Int. Ed. Engl. 58, 1638 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Y.C. Jung, B. Bhushan, Langmuir 25, 14165 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. C.B. Xu, L.K. Ma, Y. Zhao, W.J. Yang, Res. Environ. Sci. 29, 1083 (2016)

    CAS  Google Scholar 

  27. S. Qiu, Y. Li, G. Li, Z. Zhang, Y. Li, T. Wu, ACS Sustain. Chem. Eng. 7, 5560 (2019)

    Article  CAS  Google Scholar 

  28. S.J. Choi, T.H. Kwon, H. Im, D.I. Moon, D.J. Baek, M.L. Seol, J.P. Duarte, Y.K. Choi, ACS Appl. Mater. Interfaces 3, 4552 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Z. Lu, J. Song, K. Pan, J. Meng, Z. Xin, Y. Liu, Z. Zhao, R.H. Gong, J. Li, ACS Appl. Mater. Interfaces 11, 20037 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. J.L. Zhang, H. Xu, J. Guo, T.C. Chen, H.T. Liu, Appl. Sci.-Basel 10, 13 (2020)

    Article  CAS  Google Scholar 

  31. D. Wu, Z. Yu, W. Wu, L. Fang, H. Zhu, RSC Adv. 4, 53514 (2014)

    Article  ADS  CAS  Google Scholar 

  32. E. Ozkan, A. Mondal, P. Singha, M. Douglass, S.P. Hopkins, R. Devine, M. Garren, J. Manuel, J. Warnock, H. Handa, ACS Appl. Mater. Interfaces 12, 51160 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. X. Zhang, R. Feng, J. Wang, W. Wang, J. Hua, Z. Wang, Macromol. Mater. Eng.. Mater. Eng. (2021). https://doi.org/10.1002/mame.202000745

    Article  Google Scholar 

  34. L. Ning, Y. Liu, Y. Luo, Y. Han, L. Zhang, M. Zhang, Environ. Sci.: Adv. 2, 473 (2023)

    CAS  Google Scholar 

  35. D.N.H. Tran, S. Kabiri, T.R. Sim, D. Losic, Environ. Sci.-Water Res. 1, 298 (2015)

    CAS  Google Scholar 

  36. T. Zhang, C. Xiao, J. Zhao, J. Cheng, K. Chen, Y. Huang, ACS Omega 4, 7237 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. Zhou, X. Zhao, G. Ju, Adv. Mater. Interfaces Mater. Interfaces. (2022). https://doi.org/10.1002/admi.202101449

    Article  Google Scholar 

  38. Y. Fang, L. Yan, H. Liu, A.C.S. Appl, Polym. Mater. 2, 3781 (2020)

    CAS  Google Scholar 

  39. J. Liu, L. Wang, F. Guo, L. Hou, Y. Chen, J. Liu, N. Wang, Y. Zhao, L. Jiang, J. Mater. Chem. A 4, 4365 (2016)

    Article  CAS  Google Scholar 

  40. C.F. Wang, S.J. Lin, A.C.S. Appl, Mater. Interfaces 5, 8861 (2013)

    Article  CAS  Google Scholar 

  41. Z. Wang, P. Jin, M. Wang, G. Wu, C. Dong, A. Wu, A.C.S. Appl, Mater. Interfaces 8, 32862 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Provincial Department of Education (Nos. KJ2020A0493 and 2021jyxm0861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuqing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video S1 of oil collection device recycling diesel oil on the water surface (MP4 6137 KB)

Video S2 of oil collection device recycling n-hexane on the water surface (MP4 3610 KB)

Video S3 of modified oil-absorbing sponge recycling CCl4 (MP4 873 KB)

Video S4 of oil collection device recycling surface crude oil on the water surface (MP4 19675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Zhou, X., Huang, Z. et al. Pumping with Modified Polyurethane Sponges: A Rapid Oil Spill Treatment Technology. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00140-2

Keywords

Navigation