Skip to main content
Log in

Effectiveness of Inorganic Nitrogen on Kojic Acid Production from Fungi Aspergillus sp. BU20S

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Kojic acid is a valuable compound that contributes to various therapeutic and cosmetic applications. Organic nitrogen partially contributes to fermentation and mostly prefers cell growth as well as increases production costs. This study aims to find the effect of low-cost inorganic nitrogen in the form of ammonium chloride on kojic acid production from fungal isolate Aspergillus sp. BU20S. A 3.63-times increase in the kojic acid (4.43 ± 0.47 g/L) was found when only the ammonium chloride was supplemented in glucose (10 g/L) medium than other minimal salts. The product formation was 2.52 ± 0.56 g/L in ammonium chloride as compared to 2.02 ± 0.06 g/L yeast extract after 10 days. The carbon/nitrogen ratio (C/N) was found optimal as 15 (molecular C/N: 23.58) which gives a high titer of 5.17 ± 0.84 g/L from 10 g/L of glucose. At this optimal molecular nitrogen value, the nitrogen supplement cost can be reduced by 93–99% compared to yeast extract. The antimicrobial potential of kojic acid purified from the fermented broth was also studied against methicillin-resistant Staphylococcus aureus (MRSA). The purified kojic acid showed a ~ 20 mm zone of inhibition at a 2.5 mg dose loaded over 7.4 × 109 CFU/mL of MRSA. This study concludes that only ammonium chloride is a sufficient inorganic nitrogen source to produce kojic acid and is useful in reducing production costs. The purified kojic acid is also an effective antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Saeedi, M. Eslamifar, K. Khezri, Biomed. Pharmacother.Pharmacother. 110, 582 (2019)

    Article  CAS  Google Scholar 

  2. F. Bashir, K. Sultana, M. Khalid, H. Rabia, N.H. Khan, Asian J. Health. Sci. 6, 13 (2021)

    Google Scholar 

  3. I. Goldberg, J. S. Rokem, in Encyclopedia of Microbiology, ed by M. Schaechter (Elsevier Inc. 2009), p. 421.

  4. A. Promsang, V. Rungsardthong, B. Thumthanaruk, C. Puttanlek, D. Uttapap, T. Foophow, V. Phalathanaporn, S. Vatanyoopaisarn, I.O.P. Conf, Ser. Earth Environ. Sci. 346, 012047 (2019)

    Google Scholar 

  5. M.A. Khan, M.M. Javed, A. Ahmed, S. Zahoor, K. Iqbal, Pakistan J. Biochem. Biotechnol. 1, 1 (2020)

    Google Scholar 

  6. R. Yamada, T. Yoshie, S. Wakai, N. Asai-Nakashima, F. Okazaki, C. Ogino, H. Hisada, H. Tsutsumi, Y. Hata, A. Kondo, Microb. Cell Fact.. Cell Fact. 13, 1 (2014)

    Article  Google Scholar 

  7. H. Suryadi, D.K.P. Sukarna, Int. J. Appl. Pharm. 10, 279 (2018)

    Article  CAS  Google Scholar 

  8. R. Mohamad, A.B. Ariff, J. Ind. Microbiol. Biotechnol.Microbiol. Biotechnol. 25, 20 (2000)

    Article  Google Scholar 

  9. F. Davami, F. Eghbalpour, L. Nematollahi, F. Barkhordari, F. Mahboudi, Iran. Biomed. J. 19, 194 (2015)

    PubMed  PubMed Central  Google Scholar 

  10. S. Sharma, S. Singh, S.J. Sarma, World J. Microbiol. Biotechnol.Microbiol. Biotechnol. 39, 1 (2023)

    Article  Google Scholar 

  11. M. Papagianni, F. Wayman, M. Mattey, Appl. Environ. Microbiol.Microbiol. 71, 7178 (2005)

    Article  CAS  Google Scholar 

  12. S. Singh, S. Sharma, S.J. Sarma, S.K. Brar, Fermentation 9, 318 (2023)

    Article  CAS  Google Scholar 

  13. M. Ginésy, D. Rusanova-Naydenova, U. Rova, Fermentation 3, 60 (2017)

    Article  Google Scholar 

  14. Y. Wu, Y.G. Shi, L.Y. Zeng, Y. Pan, X.Y. Huang, L.Q. Bian, Y.J. Zhu, R.R. Zhang, J. Zhang, Food Sci. Technol. Int. 25, 3 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. J. C. Rodrigues, W. Lima Da Silva, D. Ribeiro Da Silva, C. R. Maia, C. V. Santos Goiabeira, H. D. Figueiredo Chagas, G. M. Ayres D’Elia, G. S. Barbosa Alves, V. Zahner, C. V. Nunez, O. C. Cristo Fernandes, Int. J. Microbiol. 2022, 4010018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. S. Sharma, S. Singh, S.J. Sarma, J. Ind. Eng. Chem. 120, 316 (2023)

    Article  CAS  Google Scholar 

  17. T.K. Ghose, Pure Appl. Chem. 59, 257 (1987)

    Article  CAS  Google Scholar 

  18. M. Pastucha-Panek, E. Walaszczyk, Acta Sci. Pol. Biotechnol. 18, 5 (2019)

    Google Scholar 

  19. C. Ranjit Kumar, S. Jayalakshmiat, Int. J. Chemtech Res. 10, 550 (2017)

    Google Scholar 

  20. C.S. Osorio-González, R. Saini, K. Hegde, S.K. Brar, A. Lefebvre, A. Avalos Ramirez, J. Clean. Prod. Clean. Prod. 384, 135687 (2023)

    Article  Google Scholar 

  21. T. Nurunnabi, S. Al-Majmaie, I. Nakouti, L. Nahar, S. Rahman, M. Sohrab, M. Billah, F. Ismail, G. Sharples, S.D. Sarker, Asian Pac J Trop Med 11, 350 (2018)

    Article  CAS  Google Scholar 

  22. C.Z.W. Sie, Z. Ngaini, N. Suhaili, E. Madiahlagan, J. Chem. 2018, 1245712 (2018)

    Article  Google Scholar 

  23. S.N.A. Syed Azhar, S.E. Ashari, S. Ahmad, N. Salim, RSC Adv. Adv. 10, 43894 (2020)

    Article  CAS  Google Scholar 

  24. H. Ezzat, M. Rady, R.M. Hathout, M. Abdel-Halim, S. Mansour, J. Drug Deliv. Sci. Technol. 64, 102625 (2021)

    Article  CAS  Google Scholar 

  25. L. Song, W. Xie, Y. Zhao, X. Lv, H. Yang, Q. Zeng, Z. Zheng, X. Yang, Polymers (Basel) 11, 1979 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Bennett University for providing Ph.D. fellowship to Mr. Sumit and Ms. Shikha to conduct this study.

Funding

This study was funded by Bennett University through its Ph.D. fellowship program.

Author information

Authors and Affiliations

Authors

Contributions

SS (Sumit Sharma): conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft preparation. SS (Shikha Singh): writing—review and editing. SJS; visualization, supervision, project administration, funding acquisition, supervision. All authors updated the manuscript and approved the final version of it.

Corresponding author

Correspondence to Saurabh Jyoti Sarma.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Singh, S. & Sarma, S.J. Effectiveness of Inorganic Nitrogen on Kojic Acid Production from Fungi Aspergillus sp. BU20S. Korean J. Chem. Eng. 41, 1163–1172 (2024). https://doi.org/10.1007/s11814-024-00135-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00135-z

Keywords

Navigation