Skip to main content
Log in

Synthesis of Hexafluoropropylene Oxide from Hexafluoropropylene and Hypochlorite Using Hydrofluoroether Solvent

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hexafluoropropylene oxide (HFPO) is a versatile fluorochemical widely used in the synthesis of various fluorinated compounds and fluorinated polymers. In this paper, we report on the successful synthesis of HFPO via the epoxidation of hexafluoropropylene (HFP) with NaOCl in a two-phase solvent system. Among the organic phase solvents tested, hydrofluoroethers such as C4F9OCH3, C4F9OC2H5, and C7F15OC2H5 showed high HFPO yields, indicating their potential to replace conventional CFCl2CF2Cl (CFC-113), which is ozone depleting and global warming chemical. When the reaction was carried out for 20 min at room temperature, the C4F9OCH3—water two-phase system produced HFPO with over 40% yield and over 70% selectivity. To optimize the reaction conditions, various reaction parameters were investigated, including the effects of NaOH and phase transition catalysts. Analysis of the by-products using 19F and 13C NMR and X-ray diffraction (XRD) showed that HFP/HFPO decomposes during oxidation to F¯, CO2, oxalate, trifluoroacetate, etc. Density functional theory (DFT) calculations elucidated the reaction pathway of this epoxidation: with a lower E-barrier of 12.8 kcal/mol, the nucleophilic attack of OCl¯ on the β-carbon of HFP is preferable to the α-carbon pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author (H. Lee).

References

  1. H. Millauer, W. Schwertfeger, G. Siegemund, Angew. Chem. Int. Ed. Engl. 24, 161 (1985)

    Article  Google Scholar 

  2. J.T. Hill, J. Macromol. Sci. Part A - Chem. 8, 499 (1974)

    Article  CAS  Google Scholar 

  3. G. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel, B. McKusick, P. Kirsch, Fluorine compounds organic, in Ullmann’s encyclopedia of industrial chemistry. (Wiley, Hoboken, 2016)

    Google Scholar 

  4. D. Saunders, J. Heicklen, J. Am. Chem. Soc. 87, 2088 (1965)

    Article  CAS  Google Scholar 

  5. G.G. Furin, Chem. Sustainable Dev. 14, 97 (2006)

    CAS  Google Scholar 

  6. O.V. Kuricheva, V.A. Dunyakhin, V.V. Timofeev, Y.N. Zhitnev, Russ. Chem. Bull. 48, 45 (1999)

    Article  CAS  Google Scholar 

  7. M. Łgiewczyk, Z. Czech, Pol. J. Chem. Technol. 12, 1 (2010)

    Article  Google Scholar 

  8. E. Meissner, A. Wróblewska, Pol. J. Chem. Technol. 9, 20 (2007)

    Article  CAS  Google Scholar 

  9. D. Lokhat, D. Ramjugernat, M. Starzak, Chem. Eng. Commun. 201, 1173 (2014)

    Article  CAS  Google Scholar 

  10. Z. Huang, Y. Zhang, C. Zhao, J. Qin, H. Li, M. Xue, Y. Liu, Appl. Catal. A 303, 18 (2006)

    Article  CAS  Google Scholar 

  11. M. Dos Santos Afonso, R.M. Romano, C.O. Della Védova, J. Czarnowski, Phys. Chem. Chem. Phys. 2, 1393 (2000)

    Article  Google Scholar 

  12. A. Wróblewska, E. Milchert, E. Meissner, Org. Process Res. Dev. 14, 272 (2010)

    Article  Google Scholar 

  13. D. Lokhat, A. Singh, M. Starzak, D. Ramjugernath, Chem. Eng. Res. Des. 119, 93 (2017)

    Article  CAS  Google Scholar 

  14. D. Lokhat, M. Starzak, D. Ramjugernath, Prog. React. Kinet. Mech. 41, 418 (2016)

    Article  CAS  Google Scholar 

  15. H. S. Eleuterio, R. W. Meschke, US Patent, 3,358,003 (1967)

  16. K. Ichihara, H. Nakaya, M. Hirai, Y. Senba, EP patent, 2,409,970 A1 (2010)

  17. 3MTM NovecTM 7100 Engineered Fluid | 3M United States, https://www.3m.com/3M/en_US/p/d/b40044867/

  18. 3MTM NovecTM 7200 Engineered Fluid | 3M United States, https://www.3m.com/3M/en_US/p/d/b40045142/

  19. Novec, 3MTM NovecTM 73DE Engineered Fluid | 3M United States, https://www.3m.com/3M/en_US/p/d/b40045191/

  20. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623–11627 (1994)

    Article  CAS  Google Scholar 

  21. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1978)

    Article  Google Scholar 

  22. G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al Laham, W.A. Shirley, J. Mantzaris, J. Chem. Phys. 89, 2193–2218 (1988)

    Article  ADS  CAS  Google Scholar 

  23. G.A. Petersson, M.A. Al Laham, J. Chem. Phys. 94, 6081–6090 (1991)

    Article  ADS  CAS  Google Scholar 

  24. A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113, 6378–6396 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. The Conversion of Hexafluoropropylene (HFP) to Hexafluoropropylene Oxi—Fluoryx Labs, https://fluoryx.com/blogs/news/the-conversion-of-hexafluoropropylene-hfp-to-hexafluoropropylene-oxide-hfpo

  26. L. Wang, M. Bassiri, R. Najafi, K. Najafi, J. Yang, B. Khosrovi, W. Hwong, E. Barati, B. Belisle, C. Cleri, M.C. Robson, J. Burns Wounds 6, e5 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Z.G. Zhang, H. Yin, X. Fang, J. Zhejiang Univ. Sci. A. 7, 325–329 (2006)

    Article  Google Scholar 

  28. J. Ji, Z. Lu, Y. Lei, C.H. Turner, Catalysts 8, 421 (2018)

    Article  Google Scholar 

  29. T. Hansen, P. Vermeeren, A. Haim, M.J.H. van Dorp, J.D.C. Codée, F.M. Bickelhaupt, T.A. Hamlin, Eur. J. Org. Chem. 25, 3822–28 (2020)

    Article  Google Scholar 

  30. K.B. Wiberg, Tetrahedron 24, 1083–1096 (1968)

    Article  CAS  Google Scholar 

  31. M.L. Wang, T.H. Huang, Chem. Eng. Commun. 194, 618 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (Project No. 20016071) through Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea, and was supported by KIST internal program (Atmospheric Environment Research Program, Project No. 2E32380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjoo Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1229 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N.T., Cheong, S., Ramadhan, M.D. et al. Synthesis of Hexafluoropropylene Oxide from Hexafluoropropylene and Hypochlorite Using Hydrofluoroether Solvent. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00120-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00120-6

Keywords

Navigation