Skip to main content

Advertisement

Log in

Eco-friendly Chebulic Myrobalan-Derived Porous Carbon Employed as an Electrocatalyst for the Production of Hydrogen

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The growing energy demand and environmental issues have encouraged the development of novel and sustainable energy. Hydrogen is one of the cleanest and most sustainable energy sources that provides an environmentally friendly alternative future fuel. The recent development in hydrogen production through electrocatalytic water-splitting is somewhat high-performance. The potential electrocatalysts play an essential role in hydrogen evolution reactions (HER) for electrochemical water splitting, where expensive and low-abundance platinum-based materials are the standard catalysts for HER. Herein, metal-free, low-cost, and naturally abundant chebulic myrobalan was employed as a source for the preparation of porous carbon by direct pyrolysis route, and the resulting porous carbon was utilized as an electrocatalyst for the production of hydrogen gas. The various analytical techniques confirmed the existence of sulfur, nitrogen, and oxygen in the prepared chebulic myrobalan-derived porous carbon (CM-PC). The presence of effective heteroatoms in the CM-PC may lead to interactive effects between the heteroatoms and porous carbon structures; this suggests the enhancement of the electrochemical performance of HER. The surface area of CM-PC was obtained as 675 m2 g−1 by BET measurement. The CM-PC exhibited a moderate degree of graphitization with hydrophilic functionalities. Based on these excellent properties, the CM-PC was used as an electroactive material to fabricate the working electrode and as a metal-free electrocatalyst for HER in a 0.5 M H2SO4 aqueous solution. The resulting CM-PC delivered a superior catalytic activity toward HER with a Tafel slope of ~ 79 mV decade–1 (Overpotential − 166 mVRHE at a current density of − 10 mA cm–2) and excellent long-term stability in an acidic medium. Importantly, these findings prove that the chebulic myrobalan (biomass) was turned into an effective electrocatalyst for hydrogen generation in the economical route, thereby challenging the uniqueness of platinum catalysts in the hydrogen economy. The result indicates that as-prepared catalysts (CM-PC) have excellent application value in energy and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that supports the finding are available from the corresponding authors upon reasonable request.

References

  1. Y. Dou, A. Wang, L. Zhao, X. Yang, Q. Wang, M. Shire Sudi, W. Zhu, D. Shang, Boosted hydrogen evolution reaction for a nitrogen-rich azo-bridged metallated porphyrin network. J. Colloid Interface Sci. 650, 943 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. M. Sun, S. Yun, J. Dang, Y. Zhang, Z. Liu, D. Qiao, 1d/3d Rambutan-like Mott–Schottky porous carbon polyhedrons for efficient tri-iodide reduction and hydrogen evolution reaction. Chem. Eng. J. 458, 141301 (2023)

    Article  CAS  Google Scholar 

  3. Z. Sun, T. Wang, R. Zhang, H. Li, Y. Wu, S. Toan, Z. Sun, Boosting hydrogen production via deoxygenation-sorption-enhanced biomass gasification. Biores. Technol. 382, 129197 (2023)

    Article  CAS  Google Scholar 

  4. A. Wang, Y. Dou, X. Yang, Q. Wang, M.S. Sudi, L. Zhao, D. Shang, W. Zhu, J. Ren, Efficient oxygen evolution reaction from iron-molybdenum nitride/molybdenum oxide heterostructured composites. Dalton Trans. 52, 11234 (2023)

    Article  CAS  PubMed  Google Scholar 

  5. N. Wang, X. Bo, M. Zhou, Laser conversion of biomass into porous carbon composite under ambient condition for pH-universal electrochemical hydrogen evolution reaction. J. Colloid Interface Sci. 604, 885 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. S. Wang, A. Lu, C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 8, 4 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H.-L. Huang, X. Guan, H. Li, R. Li, R. Li, S. Zeng, S. Tao, Q. Yao, H. Chen, K. Qu, Ir nanoclusters/porous n-doped carbon as a bifunctional electrocatalyst for hydrogen evolution and hydrazine oxidation reactions†. Chem. Commun. 58, 2347 (2022)

    Article  CAS  Google Scholar 

  8. S. Shenoy, C. Chuaicham, K. Sasaki, S. Park, M. Nallal, K.H. Park, K. Sekar, Nitridation-free preparation of bimetallic oxide-nitride bifunctional electrocatalysts for overall water splitting. Chem. Commun. 59, 12454 (2023)

    Article  Google Scholar 

  9. K. Pandey, H.K. Jeong, Coffee waste-derived porous carbon for hydrogen and oxygen evolution reaction. Chem. Phys. Impact 6, 100175 (2023)

    Article  Google Scholar 

  10. N. Prabu, T. Kesavan, G. Maduraiveeran, M. Sasidharan, Bio-derived nanoporous activated carbon sheets as electrocatalyst for enhanced electrochemical water splitting. Int. J. Hydrogen Energy 44, 19995 (2019)

    Article  CAS  Google Scholar 

  11. N. Prabu, R.S.A. Saravanan, T. Kesavan, G. Maduraiveeran, M. Sasidharan, An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon 152, 188 (2019)

    Article  CAS  Google Scholar 

  12. X. Li, J. Ma, J. Luo, S. Cheng, H. Gong, J. Liu, C. Xu, Z. Zhao, Y. Sun, W. Song, K. Li, Z. Li, Porous n, p co-doped carbon-coated ultrafine CO2P nanoparticles derived from DNA: an electrocatalyst for highly efficient hydrogen evolution reaction. Electrochim. Acta 393, 139051 (2021)

    Article  CAS  Google Scholar 

  13. P. Tan, Y. Wang, L. Yang, X. Zhang, J. Pan, Nitrogen-doped carbon coated Ni3Mo3N porous microrods as efficient electrocatalyst for hydrogen evolution reaction. Diam. Relat. Mater. 136, 109974 (2023)

    Article  ADS  CAS  Google Scholar 

  14. Y. Wang, S. Wang, R. Li, H. Li, Z. Guo, B. Chen, R. Li, Q. Yao, X. Zhang, H. Chen, Y. Li, K. Qu, Y. Zheng, A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon 162, 586 (2020)

    Article  CAS  Google Scholar 

  15. R. Atchudan, S. Perumal, T.N.J.I. Edison, A.K. Sundramoorthy, R. Vinodh, S. Sangaraju, S.C. Kishore, Y.R. Lee, Natural nitrogen-doped carbon dots obtained from hydrothermal carbonization of chebulic myrobalan and their sensing ability toward heavy metal ions. Sensors 23, 787 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. Atchudan, S. Perumal, T.N. Jebakumar Immanuel Edison, A.K. Sundramoorthy, N. Karthik, S. Sangaraju, S.T. Choi, Y.R. Lee, Biowaste-derived heteroatom-doped porous carbon as a sustainable electrocatalyst for hydrogen evolution reaction. Catalysts 13, 542 (2023)

    Article  CAS  Google Scholar 

  17. R. Atchudan, S. Perumal, A.K. Sundramoorthy, D. Manoj, R.S. Kumar, A.I. Almansour, Y.R. Lee, Facile synthesis of functionalized porous carbon by direct pyrolysis of Anacardium occidentale nut-skin waste and its utilization towards supercapacitors. Nanomaterials 13, 1654 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. X. Cao, Z. Li, H. Chen, C. Zhang, Y. Zhang, C. Gu, X. Xu, Q. Li, Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int. J. Hydrogen Energy 46, 18887 (2021)

    Article  CAS  Google Scholar 

  19. D. Chinnadurai, P. Karuppiah, S.-M. Chen, H.-J. Kim, K. Prabakar, Metal-free multiporous carbon for electrochemical energy storage and electrocatalysis applications. New J. Chem. 43, 11653 (2019)

    Article  CAS  Google Scholar 

  20. H.-H. Fu, L. Chen, H. Gao, X. Yu, J. Hou, G. Wang, F. Yu, H. Li, C. Fan, Y.-L. Shi, X. Guo, Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. Int. J. Hydrogen Energy 45, 443 (2020)

    Article  CAS  Google Scholar 

  21. Z. Liu, Q. Zhou, B. Zhao, S. Li, Y. Xiong, W. Xu, Few-layer n-doped porous carbon nanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting. Fuel 280, 118567 (2020)

    Article  CAS  Google Scholar 

  22. K.R.A. Saravanan, N. Prabu, M. Sasidharan, G. Maduraiveeran, Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl. Surf. Sci. 489, 725 (2019)

    Article  ADS  CAS  Google Scholar 

  23. H. Zhang, K. Yang, Y. Tao, Q. Yang, L. Xu, C. Liu, L. Ma, R. Xiao, Biomass directional pyrolysis based on element economy to produce high-quality fuels, chemicals, carbon materials—a review. Biotechnol. Adv. 69, 108262 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. L. Zhang, D. Qin, J. Feng, T. Tang, H. Cheng, Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles. Anal. Methods 15, 3073 (2023)

    Article  CAS  PubMed  Google Scholar 

  25. W. Zhang, R. Xi, Y. Li, Y. Zhang, P. Wang, D. Hu, Waste silk fabric derived n-doped carbon as a self-supported electrocatalyst for hydrogen evolution reaction. Colloids Surf., A 658, 130704 (2023)

    Article  CAS  Google Scholar 

  26. W. Cai, X. Wang, Z. Zhu, R. Kumar, P. Nana Amaniampong, J. Zhao, Z.-T. Hu, Synergetic effects in the co-pyrolysis of lignocellulosic biomass and plastic waste for renewable fuels and chemicals. Fuel 353, 129210 (2023)

    Article  CAS  Google Scholar 

  27. S. Zhang, Y. Mei, G. Lin, Pyrolysis interaction of cellulose, hemicellulose and lignin studied by TG-DSC-MS. J. Energy Inst. 112, 101479 (2024)

    Article  CAS  Google Scholar 

  28. Z. Zhou, T. Liu, A.U. Khan, G. Liu, Controlling the physical and electrochemical properties of block copolymer-based porous carbon fibers by pyrolysis temperature. Mol. Syst. Design Eng. 5, 153 (2020)

    Article  CAS  Google Scholar 

  29. M. Chen, S. Jiang, C. Huang, X. Wang, S. Cai, K. Xiang, Y. Zhang, J. Xue, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. Chemsuschem 10, 1803 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. P. Cheng, T. Li, H. Yu, L. Zhi, Z. Liu, Z. Lei, Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 120, 2079 (2016)

    Article  CAS  Google Scholar 

  31. S. Karthikeyan, G. Sekaran, In situ generation of a hydroxyl radical by nanoporous activated carbon derived from rice husk for environmental applications: kinetic and thermodynamic constants. Phys. Chem. Chem. Phys. 16, 3924 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. P. Thirukumaran, R. Atchudan, A. Shakila Parveen, Y.R. Lee, S.-C. Kim, The synthesis of mechanically stable polybenzoxazine-based porous carbon and its application as high-performance supercapacitor electrodes. New J. Chem. 45, 8738 (2021)

    Article  CAS  Google Scholar 

  33. P. Thirukumaran, R. Atchudan, A. Shakila Parveen, M. Santhamoorthy, V. Ramkumar, S.-C. Kim, N-doped mesoporous carbon prepared from a polybenzoxazine precursor for high performance supercapacitors. Polymers 13, 2048 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. B. Liu, X. Wang, Y. Chen, H. Xie, X. Zhao, A.B. Nassr, Y. Li, Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes. J. Energy Storage 68, 107826 (2023)

    Article  Google Scholar 

  35. R. Santhosh Kumar, P. Muthu Austeria, C. Sagaya Selvam Neethinathan, S. Ramakrishnan, K. Sekar, A.R. Kim, D.H. Kim, P.J. Yoo, D.J. Yoo, Highly mixed high-energy d-orbital states enhance oxygen evolution reactions in spinel catalysts. Appl. Surf. Sci. 641, 158469 (2023)

    Article  CAS  Google Scholar 

  36. M. Jalalah, S. Rudra, B. Aljafari, M. Irfan, S.S. Almasabi, T. Alsuwian, A.A. Patil, A.K. Nayak, F.A. Harraz, Novel porous heteroatom-doped biomass activated carbon nanoflakes for efficient solid-state symmetric supercapacitor devices. J. Taiwan Inst. Chem. Eng. 132, 104148 (2022)

    Article  CAS  Google Scholar 

  37. R. Atchudan, S. Perumal, D. Karthikeyan, A. Pandurangan, Y.R. Lee, Synthesis and characterization of graphitic mesoporous carbon using metal–metal oxide by chemical vapor deposition method. Microporous Mesoporous Mater. 215, 123 (2015)

    Article  CAS  Google Scholar 

  38. Y.X. Gan, Activated carbon from biomass sustainable sources. C 7, 39 (2021)

    CAS  Google Scholar 

  39. I. Piñeiro-Prado, D. Salinas-Torres, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Design of activated carbon/activated carbon asymmetric capacitors. Front. Mater. (2016). https://doi.org/10.3389/fmats.2016.00016

    Article  Google Scholar 

  40. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  41. N.M. Musyoka, B.K. Mutuma, N. Manyala, Onion-derived activated carbons with enhanced surface area for improved hydrogen storage and electrochemical energy application. RSC Adv. 10, 26928 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Z. Nie, Y. Huang, B. Ma, X. Qiu, N. Zhang, X. Xie, Z. Wu, Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage. Sci. Rep. 9, 15032 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. M. Heckova, M. Streckova, R. Orinakova, J. Hovancova, A. Guboova, T. Sopcak, A. Kovalcikova, B. Plesingerova, D. Medved, J. Szabo, J. Dusza, Porous carbon fibers for effective hydrogen evolution. Appl. Surf. Sci. 506, 144955 (2020)

    Article  CAS  Google Scholar 

  44. T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, Y.R. Lee, Supercapacitor performance of carbon supported CO3O4 nanoparticles synthesized using Terminalia chebula fruit. J. Taiwan Inst. Chem. Eng. 68, 489 (2016)

    Article  CAS  Google Scholar 

  45. Y. Zheng, Y. Liu, X. Guo, Z. Chen, W. Zhang, Y. Wang, X. Tang, Y. Zhang, Y. Zhao, Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J. Mater. Sci. Technol. 41, 117 (2020)

    Article  CAS  Google Scholar 

  46. S. Perumal, R. Atchudan, P. Thirukumaran, D.H. Yoon, Y.R. Lee, I.W. Cheong, Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. Chemosphere 286, 131760 (2022)

    Article  CAS  PubMed  Google Scholar 

  47. R. Atchudan, T.N.J.I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim, Y.R. Lee, Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens. Actuators, B Chem. 246, 497 (2017)

    Article  CAS  Google Scholar 

  48. X. Gao, L. Wu, W. Wan, Q. Xu, Z. Li, Preparation of activated carbons from walnut shell by fast activation with H3PO4: influence of fluidization of particles. Int. J. Chem. React. Eng. (2018). https://doi.org/10.1515/ijcre-2017-0074

    Article  Google Scholar 

  49. A.A. Awe, B.O. Opeolu, O.S. Fatoki, O.S. Ayanda, V.A. Jackson, R. Snyman, Preparation and characterisation of activated carbon from Vitis vinifera leaf litter and its adsorption performance for aqueous phenanthrene. Appl. Biol. Chem. 63, 12 (2020)

    Article  CAS  Google Scholar 

  50. L. Shao, Y. Sang, N. Liu, J. Liu, P. Zhan, J. Huang, J. Chen, Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture. ACS Omega 5, 17450 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. W. Yang, Z. Du, Z. Ma, G. Wang, H. Bai, G. Shao, Facile synthesis of nitrogen-doped hierarchical porous lamellar carbon for high-performance supercapacitors. RSC Adv. 6, 3942 (2016)

    Article  ADS  CAS  Google Scholar 

  52. S. Karthikeyan, K. Ahmed, A. Osatiashtiani, A.F. Lee, K. Wilson, K. Sasaki, B. Coulson, W. Swansborough-Aston, R.E. Douthwaite, W. Li, Pompon dahlia-like Cu2O/rGO nanostructures for visible light photocatalytic H2 production and 4-chlorophenol degradation. ChemCatChem 12, 1699 (2020)

    Article  CAS  Google Scholar 

  53. S. Karthikeyan, D.D. Dionysiou, A.F. Lee, S. Suvitha, P. Maharaja, K. Wilson, G. Sekaran, Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catal. Sci. Technol. 6, 530 (2016)

    Article  CAS  Google Scholar 

  54. D. Shrestha, S. Maensiri, U. Wongpratat, S.W. Lee, A.R. Nyachhyon, Shorea robusta derived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. J. Environ. Chem. Eng. 7, 103227 (2019)

    Article  CAS  Google Scholar 

  55. A. Ilnicka, M. Skorupska, M. Tyc, K. Kowalska, P. Kamedulski, W. Zielinski, J.P. Lukaszewicz, Green algae and gelatine derived nitrogen rich carbon as an outstanding competitor to pt loaded carbon catalysts. Sci. Rep. 11, 7084 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. S. Perumal, R. Atchudan, T.N.J.I. Edison, J.-J. Shim, Y.R. Lee, Exfoliation and noncovalent functionalization of graphene surface with poly-n-vinyl-2-pyrrolidone by in situ polymerization. Molecules 26, 1534 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. T. Tang, M. Zhou, J. Lv, H. Cheng, H. Wang, D. Qin, G. Hu, X. Liu, Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf., B 216, 112538 (2022)

    Article  CAS  Google Scholar 

  58. L. Shi, L. Jin, Z. Meng, Y. Sun, C. Li, Y. Shen, A novel porous carbon material derived from the byproducts of bean curd stick manufacture for high-performance supercapacitor use. RSC Adv. 8, 39937 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. R. Chulliyote, H. Hareendrakrishnakumar, M. Raja, J.M. Gladis, A.M. Stephan, Sulfur-immobilized nitrogen and oxygen co-doped hierarchically porous biomass carbon for lithium–sulfur batteries: influence of sulfur content and distribution on its performance. ChemistrySelect 2, 10484 (2017)

    Article  CAS  Google Scholar 

  60. P.M. Shanthi, P.J. Hanumantha, K. Ramalinga, B. Gattu, M.K. Datta, P.N. Kumta, Sulfonic acid based complex framework materials (CFM): nanostructured polysulfide immobilization systems for rechargeable lithium–sulfur battery. J. Electrochem. Soc. 166, A1827 (2019)

    Article  CAS  Google Scholar 

  61. H. He, Y. Zhang, W. Zhang, Y. Li, Y. Wang, P. Wang, D. Hu, Dual metal-loaded porous carbon materials derived from silk fibroin as bifunctional electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces. 13, 30678 (2021)

    Article  CAS  PubMed  Google Scholar 

  62. Z. Wu, M. Song, Z. Zhang, J. Wang, H. Wang, X. Liu, Porous two-dimensional layerd molybdenum compounds coupled with n-doped carbon based electrocatalysts for hydrogen evolution reaction. Appl. Surf. Sci. 465, 724 (2019)

    Article  ADS  CAS  Google Scholar 

  63. G. Han, M. Hu, Y. Liu, J. Gao, L. Han, S. Lu, H. Cao, X. Wu, B. Li, Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. J. Solid State Chem. 274, 207 (2019)

    Article  ADS  CAS  Google Scholar 

  64. V.C. Hoang, V.G. Gomes, K.N. Dinh, Ni- and p-doped carbon from waste biomass: a sustainable multifunctional electrode for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochim. Acta 314, 49 (2019)

    Article  CAS  Google Scholar 

  65. D.N. Sangeetha, D. Krishna Bhat, S. Senthil Kumar, M. Selvakumar, Improving hydrogen evolution reaction and capacitive properties on CoS/MoS2 decorated carbon fibers. Int. J. Hydrogen Energy 45, 7788 (2020)

    Article  CAS  Google Scholar 

  66. A. Kahyarian, B. Brown, S. Nesic, Mechanism of the hydrogen evolution reaction in mildly acidic environments on gold. J. Electrochem. Soc. 164, H365 (2017)

    Article  CAS  Google Scholar 

  67. R. Atchudan, S. Perumal, T.N. Jebakumar Immanuel Edison, S. Aldawood, R. Vinodh, A.K. Sundramoorthy, G. Ghodake, Y.R. Lee, Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction. Chemosphere 307, 135712 (2022)

    Article  CAS  PubMed  Google Scholar 

  68. G. Hou, J. Wu, T. Li, J. Lin, B. Wang, L. Peng, T. Yan, L. Hao, L. Qiao, X. Wu, Nitrogen-rich biomass derived three-dimensional porous structure captures feni metal nanospheres: an effective electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 47, 12487 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial-Linked Low Carbon Process Conversion Core Technology Development Program funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (Grant Number RS-2022-00155175). The Project was also supported by the Researchers Supporting Project number (RSP2024R231), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raji Atchudan or Yong Rok Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 451 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atchudan, R., Perumal, S., Sundramoorthy, A.K. et al. Eco-friendly Chebulic Myrobalan-Derived Porous Carbon Employed as an Electrocatalyst for the Production of Hydrogen. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00119-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00119-z

Keywords

Navigation