Skip to main content
Log in

Breaking Limits of Li-Ion Batteries with High-Voltage Spinel LiNi0.5Mn1.5O4 Nanofiber/Carbon Nanotube Composite Cathodes

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Spinel-structured LiNi0.5Mn1.5O4 (LNMO), which is used as a cathode material for lithium-ion batteries, offers economic and eco-friendly advantages, as it operates at a high voltage of 5 V and does not require expensive cobalt. However, challenges such as low electronic conductivity and volume changes due to phase transitions during charging and discharging at 3 V or lower persist, resulting in capacity degradation. In this study, LNMO nanofibers were created using the electrospinning method to tackle the volume expansion issue and maintain structural integrity of the material. In addition, the electrode was constructed with carbon nanotubes as a conductive material to improve electronic conductivity. Electrochemical evaluations showed that LNMO nanofibers combined with carbon nanotubes exhibited a higher capacity and outstanding cyclability compared to LNMO powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data cannot be made publicly available upon publication because they are not available in a format that is sufficiently accessible or reusable by other researchers. The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. M. Winter, B. Barnett, K. Xu, Chem. Rev. 118, 11433 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. K. Duan, J. Ning, L. Zhou, S. Wang, Q. Wang, J. Liu, Z. Guo, A.C.S. Appl, Mater. Interfaces. 14, 10447 (2022)

    Article  CAS  Google Scholar 

  3. Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y.A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu, Y. Li, Nat. Energy 3, 936 (2018)

    Article  CAS  Google Scholar 

  4. J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J. Yang, X.Q. Yang, J.G. Zhang, Nat. Energy 4, 180 (2019)

    Article  CAS  Google Scholar 

  5. C. Wu, J. Lou, J. Zhang, Z. Chen, A. Kakar, B. Emley, Q. Ai, H. Guo, Y. Liang, J. Lou, Y. Yao, Z. Fan, Nano Energy 87, 106081 (2021)

    Article  CAS  Google Scholar 

  6. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 21, 9938 (2011)

    Article  CAS  Google Scholar 

  7. W. Li, E.M. Erickson, Nat. Energy 5, 26 (2020)

    Article  CAS  Google Scholar 

  8. T.F. Yi, J. Mei, Y.R. Zhu, J. Power. Sources 316, 85 (2016)

    Article  CAS  Google Scholar 

  9. T. Yang, H. Zeng, W. Wang, X. Zhao, W. Fan, C. Wang, X. Zuo, R. Zeng, J. Nan, J. Mater. Chem. A 7, 8292 (2019)

    Article  CAS  Google Scholar 

  10. A. Manthiram, K. Chemelewski, E.S. Lee, Energy Environ. Sci. 7, 1339 (2014)

    Article  CAS  Google Scholar 

  11. J. Ma, P. Hu, G. Cui, L. Chen, Chem. Mater. 28, 3578 (2016)

    Article  CAS  Google Scholar 

  12. R. Xu, X. Zhang, R. Chamoun, J. Shui, J.C.M. Li, J. Lu, K. Amine, Nano Energy 15, 616 (2015)

    Article  CAS  Google Scholar 

  13. F. Kong, G. Zhang, D. Wu, F. Sun, S. Tao, S. Chu, B. Qian, W. Chu, L. Song, Chem. Eng. J. 451, 138708 (2023)

    Article  CAS  Google Scholar 

  14. E. Lee, K.A. Persson, Nanotechnology 24, 424007 (2013)

    Article  PubMed  Google Scholar 

  15. Y. Cai, S.Z. Huang, F.S. She, J. Liu, R.L. Zhang, Z.H. Huang, F.Y. Wang, H.E. Wang, RSC Adv. 6, 2785 (2016)

    Article  CAS  Google Scholar 

  16. S. Tao, F. Kong, C. Wu, X. Su, T. Xiang, S. Chen, H. Hou, L. Zhang, Y. Fang, Z. Wang, W. Chu, B. Qian, L. Song, J. Alloys Compd. 705, 413 (2017)

    Article  CAS  Google Scholar 

  17. H. Zhao, F. Li, X. Shu, J. Liu, T. Wu, Z. Wang, Y. Li, J. Su, Ceram. Int. 44, 20575 (2018)

    Article  CAS  Google Scholar 

  18. X. Ding, D. Luo, J. Cui, H. Xie, Q. Ren, Z. Lin, Angew. Chemie - Int. Ed. 59, 7778 (2020)

    Article  CAS  Google Scholar 

  19. H. Wu, K. Wang, Y. Meng, K. Lu, Z. Wei, J. Mater. Chem. A. 1, 6366 (2013)

    Article  CAS  Google Scholar 

  20. X. Cui, L. Zhang, Y. Hu, D. Yang, J. Zou, J. Alloys Compd. 914, 165354 (2022)

    Article  CAS  Google Scholar 

  21. J.G. Wang, H. Liu, H. Liu, X. Li, D. Nan, F. Kang, J. Alloys Compd. 729, 354 (2017)

    Article  CAS  Google Scholar 

  22. G. Alva, C. Kim, T. Yi, J.B. Cook, L. Xu, G.M. Nolis, J. Cabana, H.S. Kim, J. Phys. Chem. C 118, 10596 (2014)

    Article  CAS  Google Scholar 

  23. Y.-K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, J. Prakash, J. Power. Sources 161, 19–26 (2006)

    Article  CAS  Google Scholar 

  24. N.S. Hansen, D. Cho, Y.L. Joo, Small 8, 1510 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. B. Zhang, Z. Leng, Y. Ling, H. Bai, S. Li, J. Zhou, S. Wang, Crystals 12, 1624 (2022)

    Article  CAS  Google Scholar 

  26. J. Song, X. Han, K.J. Gaskell, K. Xu, S.B. Lee, L. Hu, J. Nanoparticle Res. 16, 2745 (2014)

    Article  Google Scholar 

  27. H.A. Tariq, J.J. Abraham, A.A. Quddus, S. AlQaradawi, R. Kahraman, R.A. Shakoor, J. Mater. Res. Technol. 14, 1377 (2021)

    Article  CAS  Google Scholar 

  28. J. Liu, J. Wang, Y. Ni, Y. Zhang, J. Luo, F. Cheng, J. Chen, Small Methods 3, 1900350 (2019)

    Article  CAS  Google Scholar 

  29. H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, A.C.S. Appl, Mater. Interfaces 8, 4661 (2016)

    Article  CAS  Google Scholar 

  30. E.S. Lee, A. Manthiram, Chem. Mater. 1, 3118 (2013)

    Article  CAS  Google Scholar 

  31. K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, J. Electrochem. Soc. 151, A296 (2004)

    Article  CAS  Google Scholar 

  32. J.W. Jung, C.L. Lee, S. Yu, I.D. Kim, J. Mater. Chem. A. 4, 703 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2023 Research Fund of the University of Ulsan.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MKG. The first draft of the manuscript was written by MKG, NYK, JYC, and JWJ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Young Cheong or Ji-Won Jung.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NY., Gi, M.K., Chandio, Z.A. et al. Breaking Limits of Li-Ion Batteries with High-Voltage Spinel LiNi0.5Mn1.5O4 Nanofiber/Carbon Nanotube Composite Cathodes. Korean J. Chem. Eng. 41, 1513–1520 (2024). https://doi.org/10.1007/s11814-024-00099-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00099-0

Keywords

Navigation