Skip to main content
Log in

Enhancing Removal of Acid Orange II by Heterogeneous Catalytic Ozonation Using ZnO Nanoparticles-Modified Fly Ash Composite

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, heterogeneous catalytic ozonation using fly ash (FA) modified ZnO nanoparticles to the decolorization of acid orange II (AOII) was studied. The combination of ZnO and fly ash via an incipient wetness impregnation method to form ZOFA composites created a synergistic effect that led to efficient catalytic ozonation activity towards AOII degradation and decolorization compared with individual ozonation processes. From the experimental results, ZOFA composite with the optimal weight ratio between ZnO NPs and FA was 20 wt% (denoted as ZOFA-20) that exhibited outstanding catalytic ozonation activity. Moreover, through other investigations including initial pH conditions and catalyst dosage, AOII could be effectively and optimally eliminated by 0.5 g of ZOFA-20 with an initial pH value of 11. The corresponding k value was measured as 0.248 min−1 with a maximum TOC removal content of 77.27%. Besides, ZOFA-20 could show high catalytic ozonation activity even at highly concentrated AOII concentrations while it could also retain its excellent stability and reusability over 5 continuous AOII removal cycles. From the experimental and electron paramagnetic resonance (EPR) results, hydroxyl radical (·OH) was the main active species during the catalytic ozonation of AOII. The present study provides a promising approach to prepare novel composite-based fly ash that would be applicable for removing azo dye and other dye pollutants in water via a catalytic ozonation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data is included in the articles and supplementary file.

References

  1. A. Özcan, M.A. Oturan, N. Oturan, Y. Şahin, J. Hazard. Mater. 163, 1213 (2009)

    PubMed  Google Scholar 

  2. A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, Bioresour. Technol. 98, 2369 (2007)

    PubMed  Google Scholar 

  3. M.M. Hassan, C.M. Carr, Chemosphere 209, 201 (2018)

    CAS  PubMed  Google Scholar 

  4. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Environ. Pollut. 252, 352 (2019)

    CAS  PubMed  Google Scholar 

  5. H. J. Perera, in 2020 Adv. Sci. Eng. Technol. Int. Conf. (2020), pp. 1–6.

  6. G.S. Heiss, B. Gowan, E.R. Dabbs, FEMS Microbiol. Lett. 99, 221 (1992)

    CAS  Google Scholar 

  7. S. Garcia-Segura, S. Dosta, J.M. Guilemany, E. Brillas, Appl. Catal. B 132–133, 142 (2013)

    Google Scholar 

  8. G. Qu, H. Wang, X. Li, T. Wang, Z. Zhang, D. Liang, H. Qiang, Water Sci. Technol. 83, 257 (2020)

    Google Scholar 

  9. H. Xiong, B. Zhang, C. Cui, Y. Xu, Mater. Chem. Phys. 278, 125701 (2022)

    CAS  Google Scholar 

  10. L. Zhang, Z. Cheng, X. Guo, X. Jiang, R. Liu, J. Mol. Liq. 197, 353 (2014)

    CAS  Google Scholar 

  11. K. Lin, S. Afzal, L. Xu, T. Ding, F. Li, M. Zhang, Environ. Pollut. 327, 121454 (2023)

    CAS  PubMed  Google Scholar 

  12. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. HosseinPanahi, M. Esmati, T.J. A-Musawi, Adv. Powder Technol. 31, 875 (2020)

    CAS  Google Scholar 

  13. B. Naraghi, F. Zabihi, M.R. Narooie, M. Saeidi, H. Biglari, Electron. Phys. 9, 4312 (2017)

    Google Scholar 

  14. Y. Du, M. Dai, J. Cao, C. Peng, I. Ali, I. Naz, J. Li, Chemosphere 244, 125522 (2020)

    CAS  PubMed  Google Scholar 

  15. C.V. Rekhate, J.K. Srivastava, Chem. Eng. J. Adv. 3, 100031 (2020)

    CAS  Google Scholar 

  16. F. Huang, H. Wang, X. Ruan, Water Environ. Res. 94, e10796 (2022)

    CAS  PubMed  Google Scholar 

  17. X. Wang, X. Hu, C. Zhao, Z. Sun, H. Zheng, J. Li, Z. Wang, Water Sci. Technol. 79, 1195 (2019)

    CAS  PubMed  Google Scholar 

  18. K. Guan, P. Zhou, J. Zhang, L. Zhu, Mater. Res. Express 7, 16529 (2020)

    CAS  Google Scholar 

  19. H. Lin, H. Zhang, L. Hou, J. Hazard. Mater. 276, 182 (2014)

    CAS  PubMed  Google Scholar 

  20. J. Wang, H. Chen, Sci. Total. Environ. 704, 135249 (2020)

    CAS  PubMed  Google Scholar 

  21. F.J. Beltrán, J. Rivas, P. Álvarez, R. Montero-de-Espinosa, Ozone Sci. Eng. 24, 227 (2002)

    Google Scholar 

  22. J. Nawrocki, B. Kasprzyk-Hordern, Appl. Catal. B 99, 27 (2010)

    CAS  Google Scholar 

  23. W.-L. Wang, H.-Y. Hu, X. Liu, H.-X. Shi, T.-H. Zhou, C. Wang, Z.-Y. Huo, Q.-Y. Wu, Chemosphere 231, 369 (2019)

    CAS  PubMed  Google Scholar 

  24. P. Li, R. Miao, P. Wang, F. Sun, X. Li, Chem. Eng. J. 426, 131263 (2021)

    CAS  Google Scholar 

  25. S. Maddila, V.D.B.C. Dasireddy, S.B. Jonnalagadda, Appl. Catal. B 138–139, 149 (2013)

    Google Scholar 

  26. L. Zhou, S. Zhang, Z. Li, X. Liang, Z. Zhang, R. Liu, J. Yun, J. Water Process Eng. 36, 101168 (2020)

    Google Scholar 

  27. J. Wang, X. Quan, S. Chen, H. Yu, G. Liu, J. Hazard. Mater. 368, 621 (2019)

    CAS  PubMed  Google Scholar 

  28. Z. Yang, H. Yang, Y. Liu, C. Hu, H. Jing, H. Li, Ozone Sci. Eng. 45, 147 (2023)

    CAS  Google Scholar 

  29. Z. Hussain, G. Lizhen, M. Moeen, Sustainability 12, 5218 (2020)

    Google Scholar 

  30. M. Zhang, Y. Mao, W. Wang, S. Yang, Z. Song, X. Zhao, RSC Adv. 6, 93564 (2016)

    CAS  Google Scholar 

  31. C. Rodwihok, M. Suwannakaew, S.W. Han, Y.J. Lim, S.Y. Park, S.W. Woo, J.W. Choe, D. Wongratanaphisan, H.S. Kim, Colloids Surf. A 662, 131044 (2023)

    CAS  Google Scholar 

  32. K. He, C. Zhao, G. Zhao, G. Han, J. Sol-Gel Sci. Technol. 75, 557 (2015)

    CAS  Google Scholar 

  33. J.-L. Blin, A. Léonard, Z.-Y. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham, B.-L. Su, Angew. Chemie 115, 2978 (2003)

    Google Scholar 

  34. H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror, Langmuir 18, 2111 (2002)

    Google Scholar 

  35. M. Szekeres, J. Tóth, I. Dékány, Langmuir 18, 2678 (2002)

    CAS  Google Scholar 

  36. C. Rodwihok, M. Suwannakeaw, K. Charoensri, D. Wongratanaphisan, S. Woon Woo, H.S. Kim, Bioresour. Technol. 331, 125060 (2021)

    CAS  PubMed  Google Scholar 

  37. H. Zhu, W. Ma, H. Han, Y. Han, W. Ma, Chem. Eng. J. 327, 91 (2017)

    CAS  Google Scholar 

  38. L. Zhao, Z. Sun, J. Ma, Environ. Sci. Technol. 43, 4157 (2009)

    CAS  PubMed  Google Scholar 

  39. A. Łamacz, K. Matus, B. Liszka, J. Silvestre-Albero, M. Lafjah, T. Dintzer, I. Janowska, Catal. Today 301, 172 (2018)

    Google Scholar 

  40. M. Babar, H.M.S. Munir, A. Nawaz, N. Ramzan, U. Azhar, M. Sagir, M.S. Tahir, A. Ikhlaq, S.N. huda Mohammad Azmin, M. Mubashir, K.S. Khoo, K.W. Chew, Chemosphere 307, 135738 (2022)

    CAS  PubMed  Google Scholar 

  41. S.P. Ghuge, A.K. Saroha, Process. Saf. Environ. Prot. 118, 125 (2018)

    CAS  Google Scholar 

  42. J. Bing, C. Hu, Y. Nie, M. Yang, J. Qu, Environ. Sci. Technol. 49, 1690 (2015)

    CAS  PubMed  Google Scholar 

  43. G. Yu, Y. Wang, H. Cao, H. Zhao, Y. Xie, Environ. Sci. Technol. 54, 5931 (2020)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Vietnam Ministry of Education and Training under project number: B2022-TNA-45.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Van Hung Hoang or Huu Tap Van.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 727 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, V.H., Chu, T.H.H., Nguyen, T.D. et al. Enhancing Removal of Acid Orange II by Heterogeneous Catalytic Ozonation Using ZnO Nanoparticles-Modified Fly Ash Composite. Korean J. Chem. Eng. 41, 1415–1425 (2024). https://doi.org/10.1007/s11814-024-00045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00045-0

Keywords

Navigation