Skip to main content
Log in

Enhanced Oil Yield by Catalytic Pyrolysis of Thermoplastics Using Cost-Effective Spent FCC and BaCO3 and Its Valorization to Gasoline and Diesel Grade Fuel via Fractionation

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this work, the fossil fuel-based thermoplastics, i.e., low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) were pyrolyzed at 450 °C, 500 °C, and 550 °C thermally and catalytically to enhance the oil yield and further enrichment via fractionation. In the catalytic process, spent FCC (sFCC) and low-cost BaCO3 with 10 wt% loading were used in a semi-batch quartz reactor. Thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG) were carried out at 10 °C/min for LDPE, PP, and PS to analyze the degradation behavior. Among the used catalysts, the sFCC gives higher oil yield than BaCO3 under identical conditions. The LDPE oil yield obtained was 55.5% and 35.7% for sFCC and BaCO3, respectively. Similar trends were observed for PP (80.0% and 70.0%) and PS (98.0% and 95.0%). Gas chromatography–mass spectrometry (GC–MS) analysis revealed that product oil composition obtained for sFCC-catalyzed pyrolysis process was majorly in the gasoline range (C6–C12) whereas for BaCO3 enabled pyrolysis in the diesel range (C13–C18). Plausible acid and base-catalyzed reaction mechanism and product formation are discussed for catalytic pyrolysis of PP. Fractionation of pyrolysis oil was performed at 150 °C, 250 °C, and 350 °C and physiochemical properties as well as the visual inspection of resulting fractions were carried out as per ASTM methods. Overall, this work represents the utilization of sFCC and low-cost BaCO3 catalyst to convert plastic waste into promising fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

References

  1. R. Ritchie, M. Roser, Plastic pollution all our charts on plastic pollution (2020). https://ourworldindata.org/plastic-pollution#citation

  2. CPCB, Annual report 2019–20 on implementation of solid waste management rules, 2016 Central Pollution Control Board. 145–287 (2021). https://cpcb.nic.in/uploads/plasticwaste/Annual_Report_2019-20_PWM.pdf

  3. Ministry of Environment, Forest & Climate Change, Assessment & characterisation of plastic waste generation in 60 major cities (2015). https://cpcb.nic.in/displaypdf.php?id=cGxhc3RpY3dhc3RlL1BXXzYwX2NpdGllc19yZXBvcnQtSmFuLTIwMTUucGRm

  4. A.R. Rahimi, J.M. Garciá, Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 1–11 (2017). https://doi.org/10.1038/s41570-017-0046

    Article  CAS  Google Scholar 

  5. A.F. Anene, S.B. Fredriksen, K.A. Sætre, L.A. Tokheim, Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability (Switzerland). 10, 1–11 (2018). https://doi.org/10.3390/su10113979

    Article  CAS  Google Scholar 

  6. P. Dwivedi, P.K. Mishra, M.K. Mondal, N. Srivastava, Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon 5, e02198 (2019). https://doi.org/10.1016/j.heliyon.2019.e02198

    Article  PubMed  PubMed Central  Google Scholar 

  7. M.N. Siddiqui, H.H. Redhwi, Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process. Technol. 90, 545–552 (2009). https://doi.org/10.1016/j.fuproc.2009.01.003

    Article  CAS  Google Scholar 

  8. P. Kasar, D.K. Sharma, M. Ahmaruzzaman, Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process. J. Clean. Prod. 265, 121639 (2020). https://doi.org/10.1016/j.jclepro.2020.121639

    Article  CAS  Google Scholar 

  9. S.H. Chang, Plastic waste as pyrolysis feedstock for plastic oil production: a review. Sci. Total. Environ. 877, 162719 (2023). https://doi.org/10.1016/j.scitotenv.2023.162719

    Article  CAS  PubMed  Google Scholar 

  10. U. Dwivedi, K.K. Pant, S.N. Naik, Controlling liquid hydrocarbon composition in valorization of plastic waste via tuning zeolite framework and SiO2/Al2O3 ratio. J. Environ. Manage. 297, 113288 (2021). https://doi.org/10.1016/j.jenvman.2021.113288

    Article  CAS  PubMed  Google Scholar 

  11. U. Dwivedi, S.N. Naik, K.K. Pant, High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst. Waste Manag. 132, 151–161 (2021). https://doi.org/10.1016/j.wasman.2021.07.024

    Article  CAS  PubMed  Google Scholar 

  12. I. Gbolahan, H. Folorunsho, A. Umaru, Catalytic pyrolysis of waste polypropylene using Ahoko kaolin from Nigeria. Appl. Petrochem. Res. 8, 203–210 (2018). https://doi.org/10.1007/s13203-018-0207-8

    Article  CAS  Google Scholar 

  13. J. Aguado, D.P. Serrano, G. San Miguel, M.C. Castro, S. Madrid, Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. J. Anal. Appl. Pyrol. 79, 415–423 (2007). https://doi.org/10.1016/j.jaap.2006.11.008

    Article  CAS  Google Scholar 

  14. Y. Wang, K. Wu, S. Wang, J. Yu, B. Luo, H. Zhang, Tandem catalytic pyrolysis of mixed plastic packaging wastes to produce BTEX over dual catalysts. Fuel Process. Technol. 243, 107670 (2023). https://doi.org/10.1016/j.fuproc.2023.107670

    Article  CAS  Google Scholar 

  15. K.H. Lee, Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. J. Anal. Appl. Pyrol. 94, 209–214 (2012). https://doi.org/10.1016/j.jaap.2011.12.015

    Article  CAS  Google Scholar 

  16. M.R. Jan, J. Shah, H. Gulab, Catalytic conversion of waste high-density polyethylene into useful hydrocarbons. Fuel 105, 595–602 (2013). https://doi.org/10.1016/j.fuel.2012.09.016

    Article  CAS  Google Scholar 

  17. M.V. Singh, A BaCO3 nanomaterial for pyrolysis of sustainable waste and virgin polystyrene into green aromatic derivatives. ChemistrySelect 8, e202204400 (2023). https://doi.org/10.1002/slct.202204400

    Article  CAS  Google Scholar 

  18. E. Manickaraja, S. Tamilkolundu, Catalytic degradation of waste PVC into liquid fuel using BaCO3 as catalyst and its blending properties with diesel fuel. Discover 23, 74–78 (2014)

    Google Scholar 

  19. C. Cleetus, S. Thomas, S. Varghese, Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. J Energy 2013, 1–10 (2013). https://doi.org/10.1155/2013/608797

    Article  CAS  Google Scholar 

  20. M.C. Mastry, L. Dorazio, J.C. Fu, J.P. Gómez, S. Sedano, S.S. Ail, M.J. Castaldi, B. Yilmaz, Processing renewable and waste-based feedstocks with fluid catalytic cracking: impact on catalytic performance and considerations for improved catalyst design. Front. Chem. (2023). https://doi.org/10.3389/fchem.2023.1067488

    Article  PubMed  PubMed Central  Google Scholar 

  21. T. Chiranjeevi, R. Pragya, S. Gupta, D.T. Gokak, S. Bhargava, Minimization of waste spent catalyst in refineries. Procedia Environ. Sci. 35, 610–617 (2016). https://doi.org/10.1016/j.proenv.2016.07.047

    Article  CAS  Google Scholar 

  22. F. Ferella, I.D. Adamo, S. Leone, V. Innocenzi, I. De Michelis, F. Vegli, Spent FCC E-Cat: towards a circular approach in the oil refining industry. Sustainability 11, 113 (2019). https://doi.org/10.3390/su11010113

    Article  CAS  Google Scholar 

  23. N. Nagar, H. Garg, C. Sekhar, Characterization of different types of petroleum refinery spent catalyst followed by microbial mediated leaching of metal values 1 Introduction 2 Materials and methods. Chem Rep 3, 177–187 (2021)

    Article  Google Scholar 

  24. C. Chen, J. Yu, B.A. Yoza, Q.X. Li, G. Wang, A novel “wastes-treat-wastes” technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J Environ Manag 152, 58–65 (2015). https://doi.org/10.1016/j.jenvman.2015.01.022

    Article  CAS  Google Scholar 

  25. E.T. Aisien, I.C. Otuya, F.A. Aisien, Thermal and catalytic pyrolysis of waste polypropylene plastic using spent FCC catalyst. Environ. Technol. Innov. 22, 101455 (2021). https://doi.org/10.1016/j.eti.2021.101455

    Article  CAS  Google Scholar 

  26. F.A. Aisien, E.T. Aisien, Production and characterization of liquid oil from the pyrolysis of waste high-density polyethylene plastics using spent fluid catalytic cracking catalyst. Sustain Chem Clim Action 2, 100020 (2023). https://doi.org/10.1016/j.scca.2023.100020

    Article  Google Scholar 

  27. P. Kongngoen, W. Phetwarotai, S. Assabumrungrat, Possible use of spent FCC catalyst for upgrading of wax from the pyrolysis of plastics to liquid fuel. J. Anal. Appl. Pyrol. 173, 106076 (2023). https://doi.org/10.1016/j.jaap.2023.106076

    Article  CAS  Google Scholar 

  28. K. Saeaung, N. Phusunti, W. Phetwarotai, S. Assabumrungrat, Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Manag. 127, 101–111 (2021). https://doi.org/10.1016/j.wasman.2021.04.024

    Article  CAS  PubMed  Google Scholar 

  29. P.J. Donaj, W. Kaminsky, F. Buzeto, W. Yang, Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Manag. 32, 840–846 (2012). https://doi.org/10.1016/j.wasman.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  30. S.D.A. Sharuddin, F. Abnisa, W.M.A.W. Daud, M.K. Aroua, A review on pyrolysis of plastic wastes. Energy Convers Manag 115, 308–326 (2016). https://doi.org/10.1016/j.enconman.2016.02.037

    Article  CAS  Google Scholar 

  31. S.M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, A. Dutta, A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197, 177–198 (2017). https://doi.org/10.1016/j.jenvman.2017.03.084

    Article  CAS  Google Scholar 

  32. E. Akbari, S.M. Alavi, M. Rezaei, Synthesis gas production over highly active and stable nanostructured Ni[sbnd]MgO[sbnd]Al2O3 catalysts in dry reforming of methane: effects of Ni contents. Fuel 194, 171–179 (2017). https://doi.org/10.1016/j.fuel.2017.01.018

    Article  CAS  Google Scholar 

  33. D. Mei, B. Ashford, Y.L. He, X. Tu, Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: effect of catalyst supports. Plasma Process. Polym. (2017). https://doi.org/10.1002/ppap.201600076

    Article  Google Scholar 

  34. R. Miandad, M.A. Barakat, M. Rehan, A.S. Aburiazaiza, I.M.I. Ismail, A.S. Nizami, Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag. 69, 66–78 (2017). https://doi.org/10.1016/j.wasman.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  35. C. Kassargy, S. Awad, G. Burnens, K. Kahine, M. Tazerout, Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels. J. Anal. Appl. Pyrol. 127, 31–37 (2017). https://doi.org/10.1016/j.jaap.2017.09.005

    Article  CAS  Google Scholar 

  36. M.S. Abbas-Abadi, M.N. Haghighi, H. Yeganeh, A.G. McDonald, Evaluation of pyrolysis process parameters on polypropylene degradation products. J. Anal. Appl. Pyrol. 109, 272–277 (2014). https://doi.org/10.1016/j.jaap.2014.05.023

    Article  CAS  Google Scholar 

  37. S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuwa, Conversion of low density polyethylene (LDPE) over ZSM-5 zeolite to liquid fuel. Fuel 192, 71–82 (2017). https://doi.org/10.1016/j.fuel.2016.12.008

    Article  CAS  Google Scholar 

  38. B. Kunwar, B.R. Moser, S.R. Chandrasekaran, N. Rajagopalan, B.K. Sharma, Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic. Energy 111, 884–892 (2016). https://doi.org/10.1016/j.energy.2016.06.024

    Article  CAS  Google Scholar 

  39. L. Fan, Y. Zhang, S. Liu, N. Zhou, P. Chen, Y. Liu, Y. Wang, P. Peng, Y. Cheng, M. Addy, H. Lei, R. Ruan, Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Convers Manag 149, 432–441 (2017). https://doi.org/10.1016/j.enconman.2017.07.039

    Article  CAS  Google Scholar 

  40. Y. Peng, Y. Wang, L. Ke, L. Dai, Q. Wu, K. Cobb, Y. Zeng, R. Zou, Y. Liu, R. Ruan, A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Convers Manag 254, 115243 (2022). https://doi.org/10.1016/j.enconman.2022.115243

    Article  CAS  Google Scholar 

  41. T. Maqsood, J. Dai, Y. Zhang, M. Guang, B. Li, Pyrolysis of plastic species: a review of resources and products. J. Anal. Appl. Pyrol. 159, 105295 (2021). https://doi.org/10.1016/j.jaap.2021.105295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Materials Research Centre, MNIT Jaipur, and Central Analytical Facility, Manipal University Jaipur for the characterization facilities.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Prathwiraj Meena: conceptualization, data curation, formal analysis, validation, visualization, writing—original draft, writing—review, and editing. Surabhi Singh: sample preparation, data curation, and writing. Manisha Sharma: formal analysis. Virendra Kumar Saharan: data interpretation and data curation. Suja George: conceptualization, review, and editing. Rohidas Bhoi: conceptualization, data curation, formal analysis, investigation, methodology, supervision, validation, resources mobility, writing -review, and editing.

Corresponding author

Correspondence to Rohidas Bhoi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to Participate

Consent to participate not applicable in this article.

Consent to Publish

All authors have consent to publish this article and given permission.

Ethical Approval

Ethical approval not applicable in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1146 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, P., Singh, S., Sharma, M. et al. Enhanced Oil Yield by Catalytic Pyrolysis of Thermoplastics Using Cost-Effective Spent FCC and BaCO3 and Its Valorization to Gasoline and Diesel Grade Fuel via Fractionation. Korean J. Chem. Eng. 41, 1055–1075 (2024). https://doi.org/10.1007/s11814-024-00041-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00041-4

Keywords

Navigation