Skip to main content
Log in

Facile Utilization of Carbon Dioxide for the Esterification of Potassium Lactate to Butyl Lactate

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The utilization of CO2 is crucial for the sustainable growth of human society. Herein, we present the direct esterification of potassium lactate (KL) with butanol under CO2 pressurization, resulting in the synthesis of butyl lactate (BL). The pressurized CO2 reacts with water to generate carbonic acid, thereby facilitating esterification. A single batch reaction yielded 17% of BL, which could be augmented to 36% via two successive operations. Ultimately, through the utilization of a minimal quantity of H2SO4 in the final step, the complete conversion of KL to BL was achieved with a selectivity exceeding 99%. The proposed integrated process necessitates approximately 63% less mineral acid compared to conventional lactate separation. An exploration of the effect of various reaction parameters, including reaction temperature, duration, CO2 pressure, and H2O content in the KL, was also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data presented in this study is available from the corresponding authors upon request.

Abbreviations

BL:

Butyl lactate

CaO:

Calcium oxide

CO2 :

Carbon dioxide

LA:

Lactic acid

N2 :

Nitrogen

KL:

Potassium lactate

KHCO3 :

Potassium bicarbonate

H2SO4 :

Sulfuric acid

K2SO4 :

Potassium sulfate

KOH:

Potassium hydroxide

References

  1. ig Glob. Energy Rev. 2019 (2020).

  2. E. De Jong, H. Stichnothe, G. Bell, and H. Jorgensen, Bio-Based Chem.: A 2020 Update (2020).

  3. B.H. Shanks, P.L. Keeling, Green Chem. 19, 3177 (2017)

    Article  CAS  Google Scholar 

  4. R.A. Sheldon, Green Chem. 16, 950 (2014)

    Article  CAS  Google Scholar 

  5. A.H. Valekar, K.R. Oh, Y.K. Hwang, Bull. Korean Chem. Soc. 42, 467 (2021)

    Article  CAS  Google Scholar 

  6. K.R. Oh, H. Lee, G.N. Yun, C. Yoo, J.W. Yoon, A. Awad, H.W. Jeong, Y.K. Hwang, A.C.S. Appl, Mater. Interfaces 15, 9306 (2023)

    Google Scholar 

  7. A. S. Nimbalkar, K.-R. Oh, S. J. Han, G.-N. Yun, S. H. Cha, P. P. Upare, A. Awad, D. W. Hwang, and Y. K. Hwang, ChemSusChem 202301315, (2023).

  8. K. Oh, H. Lee, H. Jeong, G. Yun, A. Awad, A. Nimbalkar, M. Lee, Y.K. Hwang, J. CO2 Util. 78, 102633 (2023)

    Article  CAS  Google Scholar 

  9. V. Nagarajan, A.K. Mohanty, M. Misra, A.C.S. Sustain, Chem. Eng. 4, 2899 (2016)

    CAS  Google Scholar 

  10. A. Djukić-Vuković, D. Mladenović, J. Ivanović, J. Pejin, L. Mojović, Renew. Sustain. Energy Rev. 108, 238 (2019)

    Article  Google Scholar 

  11. M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B.F. Sels, Energy Environ. Sci. 6, 1415 (2013)

    Article  CAS  Google Scholar 

  12. P. Mäki-Arvela, I.L. Simakova, T. Salmi, D.Y. Murzin, Chem. Rev. 114, 1909 (2014)

    Article  PubMed  Google Scholar 

  13. M.A. Abdel-Rahman, Y. Tashiro, K. Sonomoto, Biotechnol. Adv. 31, 877 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. J.J. Velandia, C.A. García, M.A. Céspedes, G. Rodríguez, I.D. Gil, Chem. Eng. Process. Process Intensif. 168, 108558 (2021)

    Article  CAS  Google Scholar 

  15. H.G. Joglekar, I. Rahman, S. Babu, B.D. Kulkarni, A. Joshi, Sep. Purif. Technol. 52, 1 (2006)

    Article  CAS  Google Scholar 

  16. S.P. Kamble, P.P. Barve, J.B. Joshi, I. Rahman, B.D. Kulkarni, Ind. Eng. Chem. Res. 51, 1506 (2012)

    Article  CAS  Google Scholar 

  17. C.-Y. Su, C.-C. Yu, I.-L. Chien, J.D. Ward, Ind. Eng. Chem. Res. 52, 11070 (2013)

    Article  CAS  Google Scholar 

  18. P.P. Barve, S.P. Kamble, J.B. Joshi, M.Y. Gupte, B.D. Kulkarni, Ind. Eng. Chem. Res. 51, 1498 (2012)

    Article  CAS  Google Scholar 

  19. G. Zhang, J. Zhao, X. Jin, Y. Qian, M. Zhou, X. Jia, F. Sun, J. Jiang, W. Xu, B. Sun, Front. Chem. 10, 1 (2022)

    Google Scholar 

  20. D. Akbulut, S. Özkar, RSC Adv. 12, 18864 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Park, A.H. Valekar, K.-R. Oh, A. Awad, I.-H. Song, C. Yoo, J. An, Y.K. Hwang, Chem. Eng. J. 463, 142410 (2023)

    Article  CAS  Google Scholar 

  22. G.M. Lari, G. Pastore, M. Haus, Y. Ding, S. Papadokonstantakis, C. Mondelli, J. Pérez-Ramírez, Energy Environ. Sci. 11, 1012 (2018)

    Article  CAS  Google Scholar 

  23. M. Verma, G.A. Bhaduri, V.S. Phani Kumar, P.A. Deshpande, Ind. Eng. Chem. Res. 60, 4777 (2021)

    Article  CAS  Google Scholar 

  24. M.T. Nguyen, T.K. Ha, J. Am. Chem. Soc. 106, 599 (1984)

    Article  CAS  Google Scholar 

  25. B.G. Harvey, H.A. Meylemans, J. Chem. Technol. Biotechnol. 86, 2 (2011)

    Article  CAS  Google Scholar 

  26. X. Gui, Z. Tang, W. Fei, J. Chem. Eng. Data 56, 2420 (2011)

    Article  CAS  Google Scholar 

  27. C.H.F.E.M. Filachione, Ind. Eng. Chem. 30, 228 (1946)

    Article  Google Scholar 

  28. K.R. Oh, Y. Han, G.Y. Cha, A.H. Valekar, M. Lee, S.E. Sivan, Y.U. Kwon, Y.K. Hwang, A.C.S. Sustain, Chem. Eng. 9, 14051 (2021)

    CAS  Google Scholar 

  29. A. Kumar, R. Bhardwaj, S.K. Mandal, J. Choudhury, ACS Catal. 12, 8886 (2022)

    Article  CAS  Google Scholar 

  30. K. Wang, Z. Yang, Y. Ma, W. Zhao, J. Sun, T. Lu, H. He, Biofuels Bioprod. Biorefining 16, 1428–1454 (2022)

    Article  CAS  Google Scholar 

  31. A.H. Valekar, K.-R. Oh, S.-K. Lee, Y.K. Hwang, J. Ind. Eng. Chem. 101, 66 (2021)

    Article  CAS  Google Scholar 

  32. K. Oh, G. Yun, K. Kim, Y. Cheong, C. Yoo, F. Prihatno, H. Jang, A.H. Valekar, G. Cha, M. Lee, J. Jung, Y. Kwon, Y.K. Hwang, Chem. Mater. 34, 8153 (2022)

    Article  CAS  Google Scholar 

  33. K.-R. Oh, A.H. Valekar, G.-Y. Cha, Y. Kim, S.-K. Lee, S.E. Sivan, P.P. Upare, M.-J. Lee, Y.-U. Kwon, Y.K. Hwang, Chem. Mater. 32, 10084 (2020)

    Article  CAS  Google Scholar 

  34. S. Xu, Q. Tian, Y. Xiao, W. Zhang, S. Liao, J. Li, C. Hu, J. Catal. 413, 407 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Carbon Upcycling Project for Platform Chemicals (Grant number: 2022M3J3A1085580) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea and the Ministry of Trade, Industry, and Energy of the Republic of Korea (No. 20202020800330).

Funding

The National Research Foundation of Korea, 2022M3J3A1085580, Young Kyu Hwang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changho Yoo or Young Kyu Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1400 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, A., Valekar, A.H., Oh, KR. et al. Facile Utilization of Carbon Dioxide for the Esterification of Potassium Lactate to Butyl Lactate. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00017-4

Keywords

Navigation