Skip to main content
Log in

Exergoeconomic analysis of an LNG integrated - air separation process

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An integrated LNG regasification - air separation process is investigated using exergy and exergoeconomic analyses. The objective of developing this integrated process is to lower the calorific value of LNG by mixing regasified LNG with high purity nitrogen, while simultaneously recovering and utilizing valuable cryogenic energy from the LNG during its regasification to minimize the power consumption of the air separation unit (ASU) for nitrogen production. The overall exergy efficiency and exergy destruction of the integrated process are 76.47% and 28.52 MW, respectively, with the compression section causing the most exergy destruction. Further exergoeconomic analysis of the proposed process reveals that the air compressors have the highest capital investment (CI) and operating and maintenance (O&M) cost rates, the pumps for cooling water and LNG have the highest exergoeconomic factors, and the low-pressure column and a multistream heat exchanger have the highest exergy destruction cost rates. A parametric study is also conducted to examine the impact of economic variables including interest rate, plant life, and compressor performance on exergy destruction, CI and O&M cost rates, and exergoeconomic factor. The findings of this study offer valuable insight into the design and optimization of similar integrated processes, with potential benefits for the energy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

area [m2]

C:

cost rate [$/h]

Cd, k :

exergy destruction cost rate for equipment k [$/h]

Cf, k :

exergy destruction cost rate for an inlet stream to equipment k [$/h]

Cp, k :

exergy destruction cost rate for an outlet stream from equipment k [$/h]

c:

cost per unit exergy [$/GJ]

cf, k :

cost per unit exergy for an inlet stream to equipment k [$/GJ]

cp, k :

cost per unit exergy for an outlet stream from equipment k [$/GJ]

D:

diameter of the vessel [m]

E:

exergy of a stream

Echem :

chemical exergy of a stream [kW]

Ephy :

physical exergy of a stream [kW]

Etot :

total exergy of a stream [kW]

Ein :

exergy of an inlet stream [kW]

Eout :

exergy of an outlet stream [kW]

Ed, k :

exergy destruction in equipment k [kW]

Ef, k :

exergy of an inlet stream to equipment k [kW]

Ep, k :

exergy of an outlet stream from equipment k [kW]

Eq :

exergy corresponding to heat flow \(({\rm{kW}}) = Q\left( {{{{{\rm{T}}_0}} \over {\rm{T}}} - 1} \right)\)

fk :

exergoeconomic factor [%]

F:

flow rate [TPH, tons per hour]

FD :

driver (electric motor, steam turbine, etc.) factor

FM :

material factor

H:

annual working hours [h]

i:

interest rate [%]

L:

length/tangent to tangent height of the vessel [m]

N:

plant lifetime [years]

n:

number of trays

PEC:

purchased equipment cost [$]

Po :

reference pressure [1.01325 bar]

Pc :

power [kW]

Q:

heat flow [kW]

rk :

relative cost difference [%]

ΔTmin :

minimum approach temperature [K]

To :

reference temperature [298.15 K]

W:

mechanical work [kW]

Wp :

work required by the pump [kW]

Win :

work required (for pumps and compressors) [kW]

Wout :

work produced (from turbine) [kW]

Y D, k :

exergy destruction ratio [%]

Z k :

investment cost rate [$/h]

ε k :

exergy efficiency [%]

η p :

pump efficiency [%]

f:

feed

P:

product

k:

k-th equipment

ASU:

air separation unit

CI:

capital investment

EES:

engineering equation solver

HP:

horsepower

LNG:

liquefied natural gas

LMTD:

log mean temperature difference

O&M:

operations and maintenance

TPH:

tons per hour

References

  1. A. Atienza-Márquez, J. C. Bruno and A. Coronas, Appl. Therm. Eng., 132, 463 (2018).

    Article  Google Scholar 

  2. J. Pospíšil, P. Charvát, O. Arsenyeva, L. Klimeš, M. Špiláček and J. J. Klemeš, Renew. Sust. Energy Rev., 99, 1 (2019).

    Article  Google Scholar 

  3. A. Mahmood, N. Javaid, A. Zafar, R. A. Riaz, S. Ahmed and S. Razzaq, Renew. Sust. Energy Rev., 31, 182 (2014).

    Article  Google Scholar 

  4. K. Bakht, F. Aslam, T. Nawaz and B. Seerat, Int. J. Adv. Comput. Sci. Appl., 7, 66 (2016).

    Google Scholar 

  5. Exxon Mobil Corporation, 2019 Outlook for Energy: A Perspective to 2040 (2019).

  6. U. Perwez, A. Sohail, S. F. Hassan and U. Zia, Energy, 93, 2423 (2015).

    Article  Google Scholar 

  7. S. Malik, M. Qasim, H. Saeed, Y. Chang and F. Taghizadeh-Hesary, Energy Policy, 144, 111552 (2020).

    Article  Google Scholar 

  8. Ministry of Planning Development & Special Initiatives (Government of Pakistan), Pakistan Natural Gas: Policy Analysis & Way Forward, Islamabad, Pakistan (2023).

  9. British Petroleum, BP Statistical Review of World Energy 2021 (2021).

  10. National Electric Power Regulatory Authority (NEPRA), State of Industry Report 2022, Islamabad, Pakistan (2022).

  11. P. Dorosz, P. Wojcieszak and Z. Malecha, Entropy, 20, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. D. Fioriti, A. Baccioli, G. Pasini, A. Bischi, F. Migliarini, D. Poli and L. Ferrari, Energy Convers. Manage., 238, 114128 (2021).

    Article  CAS  Google Scholar 

  13. I. Szczygiel and Z. Bulinski, Energy, 165, 999 (2018).

    Article  CAS  Google Scholar 

  14. J. Bao, T. Yuan, L. Zhang, N. Zhang, X. Zhang and G. He, Energy Convers. Manage., 184, 107 (2019).

    Article  CAS  Google Scholar 

  15. M. Mehrpooya, M. Kalhorzadeh and M. Chahartaghi, J. Cleaner Prod., 113, 411 (2016).

    Article  CAS  Google Scholar 

  16. A. Ebrahimi and M. Ziabasharhagh, Energy, 126, 868 (2017).

    Article  CAS  Google Scholar 

  17. D. Kim, R. E. H. Giametta and T. Gundersen, Ind. Eng. Chem. Res., 57, 5914 (2018).

    Article  CAS  Google Scholar 

  18. T. Gao, W. Lin and A. Gu, Energy Convers. Manage., 52, 2401 (2011).

    Article  CAS  Google Scholar 

  19. G. Tsatsaronis and T. Morosuk, Energy, 35, 820 (2010).

    Article  CAS  Google Scholar 

  20. M. Mehrpooya, R. Esfilar and S. M. A. Moosavian, J. Cleaner Prod., 142, 1749 (2017).

    Article  CAS  Google Scholar 

  21. S. Chen, J. Xu, X. Dong, H. Zhang, Q. Gao and C. Tan, Int. J. Refrig., 90, 264 (2018).

    Article  CAS  Google Scholar 

  22. H. Dhameliya and P. Agrawal, Energy Procedia, 90, 660 (2016).

    Article  Google Scholar 

  23. P. Wang and T.-S. Chung, Water Res., 46, 4037 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. C. Dispenza, G. Dispenza, V. La Rocca and G. Panno, Appl. Therm. Eng., 29, 3595 (2009).

    Article  CAS  Google Scholar 

  25. I. Lee, J. Park and I. Moon, Energy, 140, 106 (2017).

    Article  Google Scholar 

  26. Confidential, Design specification of a gas-fired power plant in Pakistan (n.d.).

  27. M. Mehrpooya and H. Ansarinasab, Energy Convers. Manage., 99, 400 (2015).

    Article  CAS  Google Scholar 

  28. S. Kumar, H.-T. Kwon, K.-H. Choi, W. Lim, J. H. Cho, K. Tak and I. Moon, Appl. Energy, 88, 4264 (2011).

    Article  CAS  Google Scholar 

  29. Y. Xiong and B. Hua, Adv. Mater. Res., 881–883, 653 (2014).

    Article  Google Scholar 

  30. T. He, Z. R. Chong, J. Zheng, Y. Ju and P. Linga, Energy, 170, 557 (2019).

    Article  Google Scholar 

  31. S. Wang, K. Huang, X. Wang, N. Liao, W. Yan, Q. Pei and B. Xia, Open Pet. Eng. J., 9, 226 (2016).

    Article  CAS  Google Scholar 

  32. A. Ebrahimi, M. Meratizaman, H. A. Reyhani, O. Pourali and M. Amidpour, Energy, 90, 1298 (2015).

    Article  CAS  Google Scholar 

  33. M. H. Hamayun, N. Ramzan, M. Hussain and M. Faheem, Ind. Eng. Chem. Res., 61, 2843 (2022).

    Article  CAS  Google Scholar 

  34. Q. Fu, Y. Kansha, C. Song, Y. Liu, M. Ishizuka and A. Tsutsumi, Appl. Energy, 162, 1114 (2016).

    Article  CAS  Google Scholar 

  35. M. Elhelw, A. A. Alsanousie and A. Attia, Alexandria Eng. J., 59, 613 (2020).

    Article  Google Scholar 

  36. S. Chen, X. Dong, J. Xu, H. Zhang, Q. Gao and C. Tan, Energy, 171, 341 (2019).

    Article  CAS  Google Scholar 

  37. M. Mehrpooya, H. Dehghani and S. M. A. Moosavian, J. Power Sources, 306, 107 (2016).

    Article  CAS  Google Scholar 

  38. H. Ansarinasab and M. Mehrpooya, Appl. Therm. Eng., 115, 885 (2017).

    Article  Google Scholar 

  39. A. Mohammadi and M. Mehrpooya, Appl. Therm. Eng., 116, 685 (2017).

    Article  Google Scholar 

  40. M. J. Zonouz and M. Mehrpooya, Energy, 140, 261 (2017).

    Article  CAS  Google Scholar 

  41. H. Ansarinasab, M. Mehrpooya and A. Mohammadi, J. Cleaner Prod., 144, 248 (2017).

    Article  CAS  Google Scholar 

  42. M. Mehrpooya, H. Ansarinasab, M. M. M. Sharifzadeh and M. A. Rosen, Energy Convers. Manage., 163, 151 (2018).

    Article  Google Scholar 

  43. W. Xu, J. Duan and W. Mao, J. Therm. Sci., 23, 77 (2014).

    Article  CAS  Google Scholar 

  44. T. Morosuk, M. Schult and G. Tsatsaronis, in ASME 2014 8th International Conference on Energy Sustainability, ASME, Boston, Massachusetts, USA, p. V002T12A010 (2014).

    Google Scholar 

  45. Z. Jieyu, L. Yanzhong, L. Guangpeng and S. Biao, Phys. Procedia, 67, 116 (2015).

    Article  Google Scholar 

  46. M. Mehrpooya, M. M. M. Sharifzadeh and M. A. Rosen, Energy, 90, 2047 (2015).

    Article  CAS  Google Scholar 

  47. R. Esfilar, M. Mehrpooya and S. M. A. Moosavian, Energy Convers. Manage., 157, 438 (2018).

    Article  CAS  Google Scholar 

  48. M. Mehrpooya and H. Ansarinasab, J. Nat. Gas Sci. Eng., 26, 782 (2015).

    Article  Google Scholar 

  49. B. Ghorbani, M.-H. Hamedi, R. Shirmohammadi, M. Hamedi and M. Mehrpooya, Sust. Energy Technol. Assess., 17, 56 (2016).

    Google Scholar 

  50. M. Mehrpooya and M. J. Zonouz, Energy Convers. Manage., 139, 245 (2017).

    Article  CAS  Google Scholar 

  51. M. Mehrpooya, H. Ansarinasab, M. M. M. Sharifzadeh and M. A. Rosen, J. Power Sources, 364, 299 (2017).

    Article  CAS  Google Scholar 

  52. Aspentech, Aspen plus is a proprietary software product of Aspentech, https://www.Aspentech.Com.

  53. T. J. Kotas, The exergy method of thermal plant analysis, Elsevier (1985).

  54. S. Tesch, T. Morosuk and G. Tsatsaronis, Energy, 141, 2458 (2017).

    Article  Google Scholar 

  55. A. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi and A. Vatani, Energy Convers. Manage., 150, 637 (2017).

    Article  CAS  Google Scholar 

  56. M. H. Hamayun, N. Ramzan, M. Hussain and M. Faheem, Energies, 13, 6361 (2020).

    Article  CAS  Google Scholar 

  57. F. Asif, M. H. Hamayun, M. Hussain, A. Hussain, I. M. Maafa and Y.-K. Park, Sustainability, 13, 6490 (2021).

    Article  CAS  Google Scholar 

  58. M. H. Hamayun, M. Hussain, I. Shafiq, A. Ahmed and Y.-K. Park, Environ. Eng. Res., 27, 200683 (2022).

    Article  Google Scholar 

  59. B. B. Kanbur, L. Xiang, S. Dubey, F. H. Choo and F. Duan, Renew. Sust. Energy Rev., 79, 1171 (2017).

    Article  Google Scholar 

  60. V. M. Ambriz-Díaz, C. Rubio-Maya, E. Ruiz-Casanova, J. Martínez-Patiño and E. Pastor-Martínez, Energy Convers. Manage., 203, 112227 (2020).

    Article  Google Scholar 

  61. C. J. Okereke, O. Lasode and I. O. Ohijeagbon, Heliyon, 6, e04402 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. H. Ozcan and I. Dincer, Int. J. Hydrogen Energy, 42, 2435 (2017).

    Article  CAS  Google Scholar 

  63. J. R. Couper, W. R. Penney, J. R. Fair and S. M. Walas, Chemical process equipment: Selection and design, 3rd ed., Elsevier (2012).

  64. W. D. Seider, D. R. Lewin, J. D. Seader, S. Widagdo, R. Gani and K. M. Ng, Product and process design principles: Synthesis, analysis, and evaluation, 4th ed., John Wiley & Sons, Inc. (2017).

  65. V. Eveloy, W. Karunkeyoon, P. Rodgers and A. Al-Alili, Int. J. Hydrogen Energy, 41, 13843 (2016).

    Article  CAS  Google Scholar 

  66. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz and D. Bhattacharyya, Analysis, synthesis, and design of chemical processes, 4th ed., Prentice Hall (2012).

  67. G. Tsatsaronis, Int. J. Exergy, 5, 489 (2008).

    Article  Google Scholar 

  68. M. Ameri, P. Ahmadi and A. Hamidi, Int. J. Energy Res., 33, 499 (2009).

    Article  Google Scholar 

  69. C. Uysal, Environ. Prog. Sust. Energy, 39, e13297 (2020).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of the SNGPL Chair of Gas Engineering in the Department of Chemical Engineering, University of Engineering & Technology, Lahore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faheem.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamayun, M.H., Ramzan, N. & Faheem, M. Exergoeconomic analysis of an LNG integrated - air separation process. Korean J. Chem. Eng. 40, 3017–3028 (2023). https://doi.org/10.1007/s11814-023-1567-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1567-z

Keywords

Navigation